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Abstract. Ocean acidification and associated shifts in car-
bonate chemistry speciation induced by increasing levels of
atmospheric carbon dioxide (CO2) have the potential to im-
pact marine biota in various ways. The process of bio-
genic calcification, for instance, is usually shown to be nega-
tively affected. In coccolithophores, an important group of
pelagic calcifiers, changes in cellular calcification rates in
response to changing ocean carbonate chemistry appear to
differ among species. By applying a wider CO2 range we
show that a species previously reported insensitive to sea-
water acidification,Coccolithus braarudii, responds both in
terms of calcification and photosynthesis, although at higher
levels of CO2. Thus, observed differences between species
seem to be related to individual sensitivities while the under-
lying mechanisms could be the same. On this basis we de-
velop a conceptual model of coccolithophorid calcification
and photosynthesis in response to CO2-induced changes in
seawater carbonate chemistry speciation.

1 Introduction

Following the industrial revolution in the late 18th century,
atmospheric carbon dioxide levels continuously increased
from about 280 to presently 395 µatm, and are currently in-
creasing further at a rate of 0.4% per year (IPCC, 2007).
The magnitude of this change would have been considerably
larger if the surface oceans had not absorbed approximately
50% of the fossil fuel emissions to date (Sabine et al., 2004).
The dissolution of anthropogenic CO2 in water is followed
by several chemical reactions leading to shifts in carbonate
chemistry speciation resulting in decreasing pH, carbonate
ion concentration, and saturation state (ocean acidification)
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and concomitant increases in the overall dissolved inorganic
carbon inventory (ocean carbonation). This conceptual sep-
aration is of potential interest for understanding the basis of
any physiological response to changes in seawater carbonate
chemistry.

Coccolithophores are significant pelagic calcifiers, con-
tributing about half to calcium carbonates preserved in open
ocean sediments (Broecker and Clark 2009). They are among
the best examined organisms with respect to their response to
ocean acidification/carbonation (e.g. Riebesell et al., 2000;
Zondervan et al., 2002; Sciandra et al. 2003; Langer et al.,
2006, 2009; Feng et al., 2008; Shi et al., 2009; Barcelos e
Ramos et al., 2010). Confusingly, the species analyzed so far
have different response patterns for calcification and photo-
synthesis in response to changing carbonate chemistry speci-
ation. WhileEmiliania huxleyiandGephyrocapsa oceanica
usually decreased calcification rates between a partial pres-
sure of CO2 (pCO2) from about 180 to 800 µatm (Riebesell
et al., 2000; Zondervan et al., 2002; Sciandra et al., 2003;
Barcelos e Ramos et al., 2010),Calcidiscus quadriperfora-
tus showed an optimum curve response, with a maximum
at currentpCO2, and Coccolithus braarudiiwas not sig-
nificantly changing calcification rates in this range (Langer
et al., 2006). Similarly, there were also differences regard-
ing organic carbon fixation rates by photosynthesis, ques-
tioning the operation of common cellular mechanisms for
calcification and photosynthesis within the group of coccol-
ithophores.

Here we investigate the response ofCoccolithus braarudii
to a broaderpCO2 range in two experiments, allowing to
draw conclusions on the origin of observed differences be-
tween species.
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Table 1. Carbon chemistry speciation for experiment I and II, calculated as the mean of start and end values of measured DIC and TA. See
materials and methods for details. It is noted that the higher variability of DIC concentrations in the second compared to the first experiment
is due to inaccuracies in artificial seawater preparation and slightly higher variability in final cell densities.

Experiment I

DIC TA pCO2 [CO2] [HCO−

3 ] [CO2−

3 ] �calcite pHtotal [H+
]

µmol kg−1 µmol kg−1 µatm µmol kg−1 µmol kg−1 µmol kg−1 nmol kg−1

1 2048 2240 505 17.8 1887.9 142.3 3.4 7.96 10.96
2 2058 2249 512 18.0 1898.0 142.0 3.4 7.96 10.96
3 2062 2238 555 19.5 1909.9 132.6 3.2 7.92 12.02
4 2058 2135 1015 35.7 1947.0 75.3 1.8 7.67 21.38
5 2022 2077 1166 41.0 1917.4 63.6 1.5 7.60 25.12
6 2057 2103 1273 44.8 1951.8 60.4 1.4 7.57 26.92
7 2005 2021 1566 55.1 1903.2 46.7 1.1 7.47 33.88
8 2048 2052 1755 61.7 1942.9 43.4 1.0 7.43 37.15
9 2058 2041 2075 73.0 1948.1 36.9 0.9 7.36 43.65

10 2032 2008 2170 76.3 1921.3 34.3 0.8 7.33 46.77
11 2065 2030 2384 83.8 1949.0 32.2 0.8 7.30 50.12
12 2060 2025 2380 83.7 1944.2 32.0 0.8 7.30 50.12
13 2026 1943 3311 116.5 1887.8 21.7 0.5 7.14 72.44
14 2035 1940 3581 126.0 1888.9 20.1 0.5 7.11 77.62
15 2042 1945 3631 127.7 1894.4 19.9 0.5 7.10 79.43

Experiment II

DIC TA pCO2 [CO2] [HCO−

3 ] [CO2−

3 ] �calcite pHtotal [H+
]

µmol kg−1 µmol kg−1 µatm µmol kg−1 µmol kg−1 µmol kg−1 nmol kg−1

1 2132 2385 407 14.3 1932.7 185.0 4.4 8.06 8.66
2 2122 2370 413 14.5 1926.2 181.3 4.3 8.06 8.80
3 2131 2375 423 14.9 1937.2 178.9 4.3 8.05 8.97
4 2048 2230 532 18.7 1893.3 136.0 3.2 7.94 11.54
5 2053 2235 534 18.8 1898.1 136.1 3.2 7.94 11.55
6 2068 2243 560 19.7 1916.1 132.2 3.2 7.92 12.01
7 2061 2162 863 30.4 1942.5 88.2 2.1 7.74 18.25
8 2055 2149 901 31.7 1939.1 84.2 2.0 7.72 19.08
9 2059 2152 910 32.0 1943.2 83.8 2.0 7.72 19.22

10 1973 2028 1133 39.9 1870.8 62.3 1.5 7.60 24.87
11 1974 2018 1235 43.4 1873.2 57.4 1.4 7.57 27.06
12 1976 2017 1265 44.5 1875.4 56.1 1.3 7.56 27.70
13 2094 2108 1656 58.2 1987.6 48.1 1.1 7.47 34.21
14 2102 2107 1781 62.6 1994.3 45.1 1.0 7.44 36.67
15 2080 2083 1792 63.0 1973.1 43.8 1.0 7.43 37.30

2 Methods

The response ofCoccolithus braarudiito changing seawater
carbonate chemistry was analysed in two experiments. In the
first experiment thepCO2 was varied from 500 to 3500 µatm
and in the second from 400 to 1700 µatm (compare Table 1).

Monospecific cultures ofCoccolithus braarudii(strain
RCC 1200, isolated in the South Atlantic off Namibia and
kindly provided by the Roscoff Culture Collectionhttp://
www.sb-roscoff.fr/Phyto/RCC/) were incubated in triplicates
as dilute batch cultures.

Cells were grown in sterile-filtered natural North Sea wa-
ter in the first experiment, and, for technical reasons, in arti-
ficial seawater (Kester et al., 1967) in the second experiment,
both at a temperature of 17◦C and a salinity of 34. To ensure
exponential growth without nutrient limitation 80 µmol kg−1

of nitrate and 5 µmol kg−1 of phosphate, trace metals, sele-
nium and vitamins according to the f/2-medium (Guillard,
1975) were added. The incident photon flux density (PFD)
was 130 µmol m−2 s−1 at a 16/8 light/dark cycle.
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Carbonate system manipulation

Manipulation of carbonate chemistry speciation to simulate
ongoing ocean acidification can be achieved by either chang-
ing dissolved inorganic carbon (DIC) at constant total al-
kalinity (TA) or by varying TA at constant DIC (compare
Schulz et al., 2009 and Gattuso et al., 2010). The latter ap-
proach was chosen here for direct comparability with a previ-
ous study onCoccolithus braarudii(Langer et al., 2006). It is
noted that there are differences in carbonate chemistry speci-
ation between DIC and TA manipulation. In terms of magni-
tude and sign in concentration changes they are marginal for
CO2 ranges from 180 to 800 µatm, while towards higher lev-
els there are increasing differences in terms of biocarbonate
(HCO−

3 ) concentration changes which start to decrease when
manipulating TA instead of constantly increasing when ma-
nipulating DIC (Schulz et al., 2009). However, this was only
the case at the highestpCO2 level of about 3500 µatm (com-
pare Table 1). There are also increasing differences in CO2−

3
ion concentration changes towards such highpCO2 levels,
but CO2−

3 concentrations steadily decrease in both manipu-
lations.

TA was manipulated by adding suitable amounts of
1 M HCl or 1 M NaOH to the 0.2 µm filtered seawater. Car-
bonate chemistry speciation was calculated from measured
DIC and TA (see below) adopting the stoichiometric equilib-
rium constants for carbonic acid determined by Mehrbach et
al. (1973) and refitted by Dickson and Millero (1987) as a
mean of initial and final values (compare Table 1).

Experimental setup and measurements

For acclimation, pre-cultures were grown exponentially for
7 days under the experimental conditions before transfer to
experimental bottles. All bottles were incubated in tripli-
cates without headspace for 6–17 days, depending on growth
rate. To avoid pronounced variations in the carbonate sys-
tem, maximum cell numbers at the end of incubations did
not exceed 2600 in the first and 4500 cells ml−1 in the second
experiment. This corresponds to a maximum DIC drawdown
of less than 12%.

Samples for DIC and TA were taken at the beginning and
the end of both the acclimation and experimental phase. Sus-
pended particulate inorganic carbon (PIC), otherwise inter-
fering with the measurements, was removed by gentle pres-
sure filtration (0.2 µm) from DIC and by vacuum filtration
(GF/F, nominal pore size 0.7 µm) from TA samples. DIC was
determined photometrically according to Stoll et al. (2001)
with an auto-analyzer (QUAATRO, Bran and Lübbe) at a
precision of±20 µmol kg−1. TA was determined by poten-
tiometric titration in duplicate samples at 20◦C (Metrohm
Basic Titrino 794) with 0.05 M HCl (Dickson, 1981; Dickson
et al., 2003) at a precision of±3 µmol kg−1. Certified refer-
ence material (University of California, San Diego, Marine
Physical Laboratory, A. G. Dickson) was measured alongside

with the samples as an independent standard and used for
corrections.

Samples for cell abundance were determined with a Z2TM

COULTER COUNTER® cell and particle counter in the first
and, for technical reasons, by light microscopy in the second
experiment.

The cell abundances at the start (c0) and at the end of in-
cubations (c1) were used to calculate daily growth rates (µ)
during the experimental incubation period (1t , incubation
time in days) as:

µ =
ln c1 − ln c0

1 t
(1)

The initial cell abundance was based on cell counts of the
inoculum. Independent incubations with daily cell counts did
not reveal a significant lag phase for the approach applied
here. Initial and final cell abundances can therefore be used
to calculate mean daily growth rate.

At the end of the experiment duplicate samples for total
particulate carbon (TPC) and nitrogen (TPN) and particulate
organic carbon (POC) and nitrogen (PON) were filtered onto
pre-combusted (450◦C for 8 h) GF/F (Whatman) filters and
frozen at−20◦C until analysis. For POC determination, par-
ticulate inorganic carbon was removed by exposing the filters
to fuming hydrochloric acid for 12 hours. Before measure-
ment all filters were dried at 60◦C. Afterwards they were
folded and packed in tin cups and analysed in an elemental
analyser with a heat conductivity detector (EuroVector EA)
according to Sharp (1974).

3 Results

Manipulation of TA by about 300 µmol kg−1 at constant DIC
created apCO2 gradient from about 500 to 3500 µatm in
the first experiment and from about 400 to 1700 µatm in the
second experiment. Considering the combinedpCO2 range
[CO2], [CO2−

3 ] and [H+] changed relatively proportional by
a factor of about 9. While [CO2] was rising from 14 to
124 µmol kg−1 and [H+] from 6.9 to 63 nmol kg−1, [CO2−

3 ]
dropped from 181 to 21 µmol kg−1. [HCO−

3 ] was much less
affected within the same range and varied by a factor less
than 1.06 between treatments (compare Table 1). Two out
of ten triplicate treatments were clearly under-saturated with
respect to calcite (�calcite< 1) while another two were only
slightly above one.

POC production rates ofCoccolithus braarudii were
highest at intermediatepCO2 (300 pg C cell−1 d−1) and
declined towards lower and higher levels (200 and less
than 100 pg C cell−1 d−1, respectively), although more pro-
nounced in case of the latter (Fig. 1a). Calcification rates, al-
though quite noisy, clearly decreased towards higherpCO2
levels from about 300–400 p C cell−1 d−1 at the lower end to
less than 25 pg C cell−1 d−1 at the higher end of thepCO2
range (Fig. 1b). The considerably stronger decrease in PIC
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Figure 1 

 

Fig. 1. Particulate organic and inorganic carbon production rates
– (A) and(B), respectively – together with ratios of particulate in-
organic to organic carbon(C) and particulate organic carbon to ni-
trogen(D) in response to changes in carbon chemistry speciation.
Filled circles represent results of the first and open circles of the
second experiment, while triangles those of Langer et al. (2006) for
comparison.
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Figure 2 
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Fig. 2. Growth rates (µ) of Coccolithus braarudii in the first (filled
circles) and second experiment (open circles) and together with cell
diameter as measured in the first experiment in response to changing
carbon chemistry speciation –(A) and(B), respectively.

compared to POC production led to a pronounced drop in
PIC/POC (Fig. 1c). The variations in POC production, how-
ever, were not reflected in POC/PON, which generally fluctu-
ated slightly above the Redfield ratio of 6.6 in all treatments
(Fig. 1d).

Growth rates ranged between 0.6 and 0.9 d−1 at lower
pCO2 and decreased to less than 0.2 d−1 towards the higher
levels (Fig. 2a), while cell diameter decreased almost by a
factor of two (Fig. 2b).

4 Discussion

The response of coccolithophorid calcification and photosyn-
thetic carbon fixation rates to changing carbonate chemistry
speciation, more specifically to apCO2 range from about
180 to 800 µatm, has been shown to differ between species,
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challenging the concept of common cellular mechanisms for
these two processes in coccolithophores. While calcification
rates were found to decrease with increasingpCO2 in Emil-
iania huxleyiandGephyrocapsa oceanica(Riebesell et al.,
2000; Zondervan et al., 2002; Sciandra et al., 2003; Barcelos
e Ramos et al., 2010),Calcidiscus quadriperforatusshowed
an optimum curve response, andCoccolithus braarudiino
sign of change (Langer et al., 2006). Similarly, photosyn-
thetic carbon fixation rates were found to increase inEmil-
iania huxleyiandGephyrocapsa oceanica, while not being
significantly affected inCalcidiscus quadriperforatusand
Coccolithus braarudii. Extending thepCO2 range towards
higher values, however, revealed that the processes of cal-
cification and photosynthesis inCoccolithus braarudiiare
indeed prone to changes in carbonate chemistry speciation
(Fig. 1a and b). Calcification rates clearly decreased with in-
creasingpCO2 as observed inEmiliania huxleyiandGephy-
rocapsa oceanica, although at higher levels ofpCO2. They
were lowest at the two highest CO2 levels when calcite sat-
uration was below one. Here calcite dissolution may have
occurred and contributed to the low rates of net calcification.
Photosynthetic carbon fixation rates were highest at interme-
diatepCO2, suggesting an optimum curve response like seen
for calcification inCalcidiscus quadriperforatus. When ex-
tending thepCO2 range towards lower levels calcification
and photosynthetic carbon fixation rates have been shown
to decrease with decreasingpCO2 in Emiliania huxleyi, al-
though seemingly stronger in case of the latter (Buitenhuis et
al., 1999).

A conceptual model of carbonate chemistry dependant
photosynthesis and calcification in coccolithophores

Putting all pieces of information together we propose that
changes in calcification and photosynthetic carbon fixation
rates in response to changing carbonate chemistry are likely
to have the same underlying mechanisms in all coccol-
ithophores, with both processes characterized by an opti-
mum curve response (compare Fig. 3). The observed species
specific differences would reflect species specific carbonate
chemistry sensitivities rather than different cellular mecha-
nisms. This concept could also explain strain-specific differ-
ences observed forEmiliania huxleyi(Langer et al., 2009).

Identifying the carbonate chemistry parameters responsi-
ble for calcification and photosynthetic carbon fixation rate
changes towards both ends of the optima of the proposed
model is difficult. While towards the lower end concentra-
tions of CO2, HCO−

3 and H+ are decreasing and pH, CO2−

3
concentration and calcite saturation state (�calc) are increas-
ing, these trends are reversed towards the higher end (com-
pare Fig. 3). This poses the question for the optimum condi-
tions in terms of carbonate chemistry speciation for calcifi-
cation and photosynthesis.

Maximizing any biological rate requires the availabil-
ity of saturating substrate concentrations and optimal

17 

 

 

 

Figure 3 Fig. 3. Conceptual model of coccolithophorid photosynthesis and
calcification in response to changes in carbonate chemistry specia-
tion due to increasing DIC at decreasing pH.

ambient conditions. During photosynthetic carbon fixa-
tion CO2 is fixed by the enzyme Ribulose-1,5-Bisphosphat-
Carboxylase/Oxygenase (RuBisCO) in the chloroplast, while
calcification is sustained by inorganic precipitation of Ca2+

and CO2−

3 ions forming calcite in the coccolith producing
vesicle. Emiliania huxleyi, like probably most phytoplank-
ton species, is known to fuel photosynthesis by active up-
take of both CO2 and HCO−

3 from the surrounding seawater
(Rost et al., 2003; Schulz et al., 2007), however simultane-
ous CO2−

3 ion uptake by HCO−3 transporters can not be ruled
out (Mackinder et al., 2010). Although there is uncertainty
about the actual substrate taken up for calcification, it is dif-
ficult to conceive how cells would be able to operate an inter-
nal carbon pool for calcification separated from that used in
photosynthesis. This means that there should be thresholds
for the concentrations of at least two of the dissolved inor-
ganic carbon species in seawater (CO2, HCO−

3 ) below which
uptake and ultimately supply to photosynthesis and calcifi-
cation becomes sub-saturating. Furthermore, the concentra-
tion of CO2 in seawater influences the operation of carbon
concentrating mechanisms (CCMs) in marine phytoplank-
ton. Decreasing concentrations can be thought to increase the
gradient between seawater and cytosol, resulting in enhanced
net diffusive loss of CO2 out of the cytosol, and, if not com-
pensated for, decreasing internal CO2 concentrations (com-
pare Schulz et al., 2007). This implies that if cytosolic pH is
not increasing simultaneously there would be less dissolved
inorganic carbon ultimately available as substrate, eventually
resulting in reduced rates of photosynthesis and calcification.
The enhanced leakiness at low seawater CO2 concentrations
can also be expected to increase metabolic costs of carbon
supply to photosynthesis and calcification.
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Concerning optimal conditions for these two processes
cellular pH, or H+ concentration, is an important factor. Pho-
tosynthetic carbon fixation is mediated by a pH dependent
enzymatic reaction (Portis et al., 1986). Decreasing seawater
pH has been shown to result in lower intracellular pH lev-
els inEmiliania huxleyi(Suffrian et al., 2011). Whether this
is directly affecting rates of photosynthetic carbon fixation
and inorganic carbon precipitation or whether reduced rates
are connected to an overall reduced cell metabolism, is not
known. Indeed, changes in the intracellular pH reported by
Suffrian et al. (2011) can be perceived as a mixed signal of
all compartments. It is therefore unknown whether a change
in cytosolic pH also affect pH in the coccolith vesicle and/or
chloroplast. However, even in case of unaffected pH in both
vesicl, the energetic costs of calcification and photosynthesis
may still be affected as the costs of proton transport across
the vesicle and cell membrane will depend on proton gradi-
ents. Variations in seawater pH therefore have the potential to
directly impact rates of photosynthesis and calcification. The
observed changes could also be related to down-regulation of
RubisCO gene expression and increasing regeneration time
of the coccolith vesicle after a completed coccolith is chan-
nelled out of the cell.

In the proposed model, changes in carbonate chemistry
speciation such as increasing DIC at decreasing pH could be
thought to enhance calcification and photosynthesis by sup-
plying increasing amounts of substrate up to a certain thresh-
old beyond which pH levels become unfavourable (compare
Fig. 3). Ocean carbonation (increasing concentrations of
CO2 and HCO−

3 ) and acidification (decreasing pH) could
therefore act differently on these two processes. However,
at this point contributions of pH to the shape of the optimum
curve on the left side of the optimum and of CO2 on the right
side cannot be ruled out either. In any case, both photosyn-
thesis and calcification are likely to have optimum concentra-
tions for at least CO2, HCO−

3 and H+. Observed species- and
strain-specific differences in coccolithophorid photosynthe-
sis and calcification to changes in carbonate chemistry could
then be the result of different optimum concentrations for
these ions. In other words, different sensitivities rather than
divergent intra-cellular mechanisms for photosynthesis and
calcification between species and maybe even strains may ex-
plain the different responses reported forEmiliania huxleyi,
Gephyrocapsa oceanica, Calcidiscus leptoporusandCoccol-
ithus braarudii.

Acknowledgements.We thank our working group for inspiring
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