Separating the effects of ocean acidification from ocean carbonation in the coccolithophore *Emiliania huxleyi* Lennart Bach¹, Ulf Riebesell¹, Kai G. Schulz¹ ¹Leibnitz Institut für Meereswissenschaften IFM-GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany The coccolithophore *Emiliania huxleyi* was cultured in a set of experiments under a broad range of carbonate chemistry conditions to separate the effects of individual carbonate chemistry parameters such as carbon dioxide (CO_2) and pH. In the first experiment, alkalinity was kept constant (\sim 2320 μ mol/kg) and fCO₂ was varied in 18 steps from \sim 20 to \sim 6300 μ atm. In the second experiment, pH was kept constant (pH_{free} = 8) with fCO₂ varying between \sim 40 to \sim 3700 μ atm. Results from the constant alkalinity approach show for the first time a physiological optimum for growth and productivity. The optimum fCO₂ levels for growth, particulate inorganic and organic carbon production were located at \sim 250 μ atm, \sim 400 μ atm and \sim 700 μ atm, respectively. The comparison of the two experiments reveals that growth and productivity are increasing similarly from low to intermediate CO₂ levels but start to diverge in the high CO₂ range. Here, growth and productivity decrease linearly at constant alkalinity whereas they stay consistently high at constant pH. These findings suggest that growth and productivity are directly related to CO₂ at sub-saturating concentrations in the low CO₂ range whereas towards higher levels negative trends, which have also been reported in previous studies, are induced by increasing proton concentrations (decreasing pH). This study enhances our understanding of the physiological response of *E. huxleyi* to ongoing ocean acidification, in clear contrast to ocean carbonation.