Rates and regulation of nitrogen cycling in seasonally hypoxic sediments during winter (Boknis Eck, SW Baltic Sea): Sensitivity to environmental variables

Dale, Andy W., Sommer, Stefan, Bohlen, Lisa, Treude, Tina, Bertics, Victoria J., Bange, Hermann W., Pfannkuche, Olaf, Schorp, Tanja, Mattsdotter, My Eva-Kari and Wallmann, Klaus (2011) Rates and regulation of nitrogen cycling in seasonally hypoxic sediments during winter (Boknis Eck, SW Baltic Sea): Sensitivity to environmental variables Estuarine, Coastal and Shelf Science, 95 . pp. 14-28. DOI 10.1016/j.ecss.2011.05.016.

[img]
Preview
Text
DALE__ET__AL__2011.pdf - Published Version

Download (1074Kb)

Supplementary data:

Abstract

This study investigates the biogeochemical processes that control the benthic fluxes of dissolved nitrogen (N) species in Boknis Eck - a 28 m deep site in the Eckernförde Bay (southwestern Baltic Sea). Bottom water oxygen concentrations (O2-BW) fluctuate greatly over the year at Boknis Eck, being well-oxygenated in winter and experiencing severe bottom water hypoxia and even anoxia in late summer. The present communication addresses the winter situation (February 2010). Fluxes of ammonium (NH4+), nitrate (NO3-) and nitrite (NO2-) were simulated using a benthic model that accounted for transport andbiogeochemical reactions and constrained with ex situ flux measurements and sediment geochemical analysis. The sediments were a net sink for NO3- (-0.35 mmol m-2 d-1 of NO3-), of which 75% was ascribed to dissimilatory reduction of nitrate to ammonium (DNRA) by sulfide oxidizing bacteria, and 25% to NO3- reduction to NO2- by denitrifying microorganisms. NH4+ fluxes were high (1.74 mmol m-2d-1 of NH4+), mainly due to the degradation of organic nitrogen, and directed out of the sediment. NO2-fluxes were negligible. The sediments in Boknis Eck are, therefore, a net source of dissolved inorganic nitrogen(DIN = NO3- + NO2- + NH4+) during winter. This is in large part due to bioirrigation, which accounts for 76% of the benthic efflux of NH4+, thus reducing the capacity for nitrification of NH4+. The combined rate of fixed N loss by denitrification and anammox was estimated at 0.08 mmol m-2 d-1 of N2, which is at the lower end of previously reported values. A systematic sensitivity analysis revealed that denitrification and anammox respond strongly and positively to the concentration of NO3- in the bottomwater (NO3-BW).Higher O2-BW decreases DNRA and denitrification but stimulates both anammox and the contribution ofanammox to total N2 production (%Ramx). A complete mechanistic explanation of these findings is provided. Our analysis indicates that nitrification is the geochemical driving force behind the observed correlation between %Ramx and water depth in the seminal study of Dalsgaard et al. (2005). Despite remaining uncertainties, the results provide a general mechanistic framework for interpreting the existing knowledge of N-turnover processes and fluxes in continental margin sediments, as well as predicting the types of environment where these reactions are expected to occur prominently.

Document Type: Article
Keywords: Marine chemistry; Biogeochemistry; Denitrification, modelling, anammox, Kiel Bight, nitrogen cycle, hypoxia
Research affiliation: OceanRep > SFB 754 > B6
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-MG Marine Geosystems
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-JRG-A2 Seafloor Warming
OceanRep > SFB 754
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography
OceanRep > SFB 754 > B1
Refereed: Yes
DOI etc.: 10.1016/j.ecss.2011.05.016
ISSN: 0272-7714
Related URLs:
Projects: SFB754, Boknis Eck
Expeditions/Models/Experiments:
Date Deposited: 23 Aug 2011 13:02
Last Modified: 15 Jan 2014 13:50
URI: http://oceanrep.geomar.de/id/eprint/12036

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...