The use of tryptic enzyme activity measurement as a nutritional condition index: laboratory calibration data and field application

Bernd Ueberschär


Tryptic enzyme activity of herring (Clupea harengus), turbot (Scophthalmus maximus), and cod (Gadus morhua) larvae kept under defined laboratory conditions was determined. Tryptic enzyme activity was related to larval age, length, days of food deprivation, and feeding time. From 10 days after hatching onwards, significant differences in tryptic enzyme activity appeared when larvae were deprived of food for between 3 and 9 d. Diurnal feeding patterns were monitored by measuring individual tryptic enzyme activity. In short-term feeding, starving and re-feeding experiments, tryptic enzyme activity reflects the digestion processes in relation to food ingestion and re-establishment of tryptic enzyme level within hours of re-feeding. Individual tryptic enzyme activity levels in herring and sprat larvae (Sprattus sprattus) were determined in field samples and compared with laboratory calibration data in order to evaluate the nutritional condition of the field collected larvae from different sampling sites and different seasons. Continuous sampling of sardine larvae (Sardina pilchardus) on an oceanic drift station was used to show diurnal feeding rhythm by applying tryptic enzyme activity as an indicator.

B. Ueberschär: Institut für Meereskunde Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany [tel: (+49) 431 3781, fax: (+49) 431 565876].

Introduction

Survival rates and growth of fish larvae depend mainly on the availability of food and its quality in the field or in aquaculture facilities. In field research, mortality rates of fish larvae have been found to be very high; typically, less than 0.01% of larvae hatched reach adulthood. Since this high mortality is regarded to be due to starvation or predation, there has been a need to develop tools with which to determine either nutritional condition or predation rates in the field, thus identifying the major factor determining survival of the early ontogenetic stages of teleosts (Hunter, 1976; Houde, 1987; Bailey and Houde, 1989). This aim provided the background for establishing suitable methods on the basis of biochemical or physiological indicators, methods which could be used to determine larval condition in field samples. Among these (e.g., RNA/DNA ratio, lipids, C/N ratio, histology), tryptic enzyme activity has been suggested as an appropriate indicator of the fitness and survival potential of fish larvae (Hjelmeland et al. 1984). Tryptic-like enzymes are universally abundant among marine organisms and are present in a measurable amount even in the youngest stages of fish larvae and in their potential food organisms. Trypsin has been investigated in relation to feeding regimes in a number of studies and has been demonstrated to be a useful indicator of digestive processes and nutritional condition in fish larvae (e.g., Lauff and Hofer, 1984; Pedersen et al., 1987, 1990; Ueberschär, 1988; Ueberschär and Clemmesen, 1992; Ueberschär et al., 1992). In aquaculture there is also a need to evaluate the quality and quantity of food, the feeding frequencies required and digestibility of food achievable in the early stages of marine fish larvae. Although tryptic enzyme activity measurements have been initially applied to basic fisheries research in the field in order to study nutritional aspects related to recruitment problems, this methodological approach to larval condition can also be applied to aquaculture research.

The usefulness of proteolytic enzyme activity measurements in larval fish research has been discussed briefly in Ueberschär (1993). The present study provides a more detailed view on the practical application of tryptic enzyme activity methodology in small-scale laboratory experiments as well as in large-scale field...
supplemented with enriched similar conditions as described for herring and turbot Cod after feeding.

taken for different experiments at intervals before and from a commercial local hatchery (BUTT Company) and fed with enriched (DHA-Selco)
reared in the facilities of the BUTT Company under activity, samples of fed and starved turbot larvae were ages. In order to investigate diurnal pattern in enzyme
ties as herring larvae with increasing temperature during the experiment. Starvation intervals ranged from 2 to 6
nauplii were offered from day 11 onward until the end of experiments from 15.1 to 19.0°C. The larvae were fed on Artemia
chionus plicatilis) from hatching to day 19 and then supplemented with Artemia sp. nauplii until the end of the experiments (day 65). Mean concentrations of 5.0 ml⁻¹ Brachionus and 1.0 ml⁻¹ Artemia nauplii were adjusted daily in the rearing tanks. Subsequently, larvae were deprived of food for intervals of 1 to 9 days prior to sampling for enzyme measurements. Samples of fed and starved herring larvae were taken in different experimental series in the range of hours to days prior to and after feeding.

Turbot eggs (Scophthalmus maximus) were obtained from a commercial local hatchery (BUTT Company) and larvae were reared in the same experimental facilities as herring larvae with increasing temperature during experiments from 15.1 to 19.0°C. The larvae were fed on B. plicatilis until day 16 after hatching and Artemia sp. nauplii were offered from day 11 onward until the end of the experiment. Starvation intervals ranged from 2 to 6 days for the different experimental series with various ages. In order to investigate diurnal pattern in enzyme activity, samples of fed and starved turbot larvae were taken for different experiments at intervals before and after feeding.

Cod (Gadus morhua) larvae from a Baltic stock were reared in the facilities of the BUTT Company under similar conditions as described for herring and turbot and fed with enriched (DHA-Selco) B. plicatilis and supplemented with enriched Artemia sp. nauplii (DHA-Selco), but kept at lower temperature (6 to 10°C) and a salinity of 20.

The larvae sampled from all laboratory rearing experiments were preserved at —74°C in a deep-freezer. Prior to analysis, the larvae were examined for gut content, and standard length (SL) was measured (precision 0.5 mm).

Field samples

Herring larvae were caught during routine ICES cruises in the English Channel in January 1986 and in the Irish Sea in October 1985 with a MOCNESS system (1 m², Wiebe et al., 1976). Sprat larvae from batch-spawning adults were caught on five cruises in the German Bight from May to August 1991 with an HAI system (high-speed plankton sampler = GULF-II type sampler). Sardine (Sardina pilchardus) were caught during a cruise off the northwest Spanish coast 1991 with an HAI system. All larvae were separated individually from plankton samples and immediately transferred to Eppendorf® caps, shock-frozen in liquid nitrogen and stored at —74°C in a freezer. Prior to analysis, larvae were examined for damages, gut content was noted, and standard length was measured (precision 0.5 mm). Larvae with damaged guts were discarded.

Measurement of tryptic enzyme activity

Tryptic enzyme activity was assayed in accordance with the fluorescence technique described by Ueberschär (1988), with the following modifications: the temperature was adjusted to 30°C in the measuring system instead of 25°C. After temperature equilibration, 500 μl of the substrate (0.20 mmol Na-benzoyl-L-arginin-methyl-coumarinylamide, MCA, in TRIS-HCL buffer, 0.1 mol, pH 8.00) was added to 100 μl of the homogenate in the cuvette and mixed well.

Larvae were individually homogenized in 250 μl or 500 μl TRIS-HCL buffer (0.1 mol, pH 8.00), depending on the size of the larva; small larvae were homogenized in a smaller volume of buffer to gain higher enzyme concentrations and to promote fluorescence signals. When necessary, homogenates from large larvae with high enzyme activities were pre-diluted 2 to 10 times before 100 μl was added to the substrate.

The relative fluorescence enhancement (excitation 380 nm, emission 440 nm) was recorded every 2 min over a maximum period of 10 min, using a KONTRON SFM25 spectral fluorometer with a computerized cuvette holding unit. The resulting tryptic enzyme activity per larva is given as the amount of hydrolysed substrate per time unit (hydrolysed MCA larva⁻¹ min⁻¹).
Results
Reared larvae

Tryptic enzyme activity in reared 1- to 65-day-old fed and starved herring larvae is shown in Figure 1. Samples were taken in the range 1 to 9 days of starvation at several ages. With larvae older than 10 days, starved for 4 to 9 days, a significant decrease in tryptic enzyme activity can be observed compared with continuously fed larvae (independent t-test, p < 0.05). Since larval length is an easy to measure feature in field samples, but not age, tryptic enzyme activity is related to larval size for fed and starved herring larvae in Figure 2. An increase in tryptic enzyme activity with size in fed as well as in starving larvae was observed, but there was a significant overall difference between both groups (t-test, analyses of variance, p < 0.05). A linear regression analysis was fitted to the samples and shown with the 99% confidence limit. The confidence limit of the starving larvae was used as the range to evaluate the amount of starving larvae in the field samples (see Fig. 7a, b and Fig. 8).

The effect of different food concentrations on tryptic enzyme activity was demonstrated with laboratory-reared turbot larvae. Turbot larvae reared with a prey density of 2 Brachionus + 1 Artemia ml⁻¹ (high density) are compared with larvae fed with 0.5 Brachionus + 0.1 Artemia ml⁻¹ (low density) as well as with starved larvae (Fig. 3a) in relation to larval age after hatching. In larvae older than 10 days, significant differences in enzyme activity exist between larval batches reared on high food concentration and low food concentration as well as in starved larvae (independent t-test, p < 0.05). The difference between well-fed and starved larvae is much more pronounced in experiments with turbot than with herring larvae. Significant differences in enzyme activity were found for different food concentrations, but both fed groups showed very similar curves. The unexpected reduction in tryptic enzyme activity in larvae older than 23 days was suspected to be due to an infestation with parasites. Larvae were being treated but the mortality rate increased dramatically during this period. The reduced digestive enzyme activities indicated that feeding activity was much reduced under medical treatment.

Comparison of the growth rate (age/length relationship) showed deficiencies for the larvae kept on low food density (Fig. 3b). The length dependency of tryptic enzyme activity related to food density or deprivation is given in Figure 3c. Well-fed larvae showed a steep increase in enzyme activity with growth compared to the weak increase in these values for larvae kept on low feed density. Starved larvae, however, showed the lowest enzyme activities of the three conditions tested. Significant differences (t-test, analyses of variance, p < 0.05) exist between all three treatments, as shown for larvae > 5 mm (corresponding to larvae at 10 days of age and older).

The overall trends in the development of tryptic enzyme activity in well-fed laboratory-reared, herring,
Figure 2. Tryptic enzyme activity of fed and starved herring larvae related to larval length. Data points are means of 5 to 15 individually measured larvae. Starved larvae were deprived of food for from 4 to 9 d. The means of the starving larvae are significantly different from the means of the fed larvae (t-test, analyses of variance, p < 0.05). Lines were fitted by linear regression analysis (equations and number of analysed larvae are noted in the graph) and the 99% confidence limit of the regression for 4 to 9 d starving larvae is shown; this confidence limit was applied in this study to evaluate the amount of starving herring and sprat larvae in field samples (see Figs. 7 and 8).

Field samples
A comparison of laboratory calibration experiments with known feeding levels and herring larvae sampled in the field with unknown condition is presented in Figure 7a, b. Samples from two different spawning sites (English Channel in January, Fig. 7a, and northern North Sea in October, Fig. 7b) are compared. Individual tryptic enzyme activities for larvae caught between 0600 and 0600 only are shown and compared with the regression fitted to tryptic enzyme activities of starving herring belonging in two different age groups (Fig. 6a, b). Larvae were deprived of feed for 2 or 3 days and re-fed again several hours prior to sampling. In both experiments the larvae showed reduced tryptic enzyme activity in the samples prior to feeding in the range expected for starving larvae of the same age (dotted lines). After food was supplied and larvae started to feed actively, enzyme activity increased within hours and persisted above the "starvation range" after about 24 h (pre-feeding level, Fig. 6a). Larval length (SL) was tested for significant differences in the mean length between the samples (independent t-test, p < 0.05), the statistical results indicated that differences in the activity could not be attributed to differences in mean length.
Tryptic enzyme activity measurement as a nutritional condition index

Figure 3. (a) Tryptic enzyme activity of laboratory-reared turbot larvae (Scophthalmus maximus) fed at two different levels (high food density: Brachionus 2 ml\(^{-1}\), Artemia 1 ml\(^{-1}\); low density: Brachionus 0.5 ml\(^{-1}\), Artemia 0.1 ml\(^{-1}\)) and starved larvae (4 to 7 d) in relation to larval age. Data points with positive error bars (SD) are means of 5 to 15 individually measured larvae. Numbers indicate days the starving larvae were deprived of food prior to sampling. (b) Length–age relationship of the turbot larvae fed on two different food densities as shown in Figure 3a. (c) Tryptic enzyme activity of turbot larvae as shown in Figure 3a related to larval length. Data points are mean values of 5 to 15 individually measured larvae. The means of the fed larvae are significantly different from those of the larvae kept on low food density and the starving larvae (t-test, analyses of variance, p < 0.05).

larvae from the laboratory calibration data in relation to larval length (4 to 9 days starvation periods, see Fig. 2). The confidence limit (99%) of the regression was used as a limit to estimate the percentage of starving larvae in the field samples. In the sample of the English Channel, 9.1% of larvae were categorized as starving, whereas in the sample of autumn spawners no starving larvae were identified. The size distribution shows more larvae in the upper length range in the autumn sample, but even the smaller larvae from the northern North Sea were in better condition than the larvae from the English Channel in January.

A field study on sprat in the German Bight was established to examine the high variability in the recruitment processes of clupeiform species (under a SARP study, Sardine and Anchovy Recruitment Programme). Some of the investigations dealt with comparison of the condition of different larval cohorts throughout the whole
Comparison of mean trypsin enzyme activity development of laboratory-reared 1 to 18-d-old, cod, herring, and turbot larvae. Lines were fitted by linear regression analysis; equations and correlation coefficients are shown in the box.

Figure 4. Comparison of mean trypsin enzyme activity development of laboratory-reared 1 to 18-d-old, cod, herring, and turbot larvae. Lines were fitted by linear regression analysis; equations and correlation coefficients are shown in the box.

The feeding rhythm of sardine larvae was determined in samples from a 48 h drift station off the Spanish northwest coast. Mean length and mean trypsin enzyme activity are shown (Fig. 9). Very large and very small larvae were excluded for this comparison in order to reduce the influence of larval length on trypsin enzyme activity pattern. No correlation was found between mean length and mean activities. Larval size was not of significant influence on the diel pattern of trypsin enzyme activity (independent t-test, p < 0.05). Two pronounced maxima and minima appeared during the 48-h period.

The first maximum was verified by the peak in the second 24 h. The difference in the maximum values was expected due to a known high individual variability in trypsin enzyme activity for fed larvae.

Discussion

The use of enzyme activity as an indicator for fish larval condition was examined in order to find an objective tool to describe the nutritional status of fish larvae. In an earlier study, trypsin enzyme activity was found to be influenced by the amount of food offered to fish larvae (Ueberschär, 1985).
Tryptic-like enzymes are widely occurring proteolytic enzymes. The occurrence of alkaline protease trypsin has been demonstrated in many marine organisms, including fish larvae (herring, cod, turbot, sandeel), invertebrates (Crangon, crab zoea, chaetognath, cephalopod larvae; Ueberschär, unpubl.) and some potential food organisms for fish larvae (Acartia tonsa, Artemia nauplii; Ueberschär, unpubl.). Consequently, there is the potential to use trypsin activity in answering similar questions (as dealt with in this study) in investigations on the nutritional condition of other organisms, for example copepod populations. However, it has been demonstrated that potential food organisms for fish larvae (copepod-nauplii or Artemia nauplii) have rather weak activities. Part of the trypsin enzyme activity measured in a fish larva with food in the gut may be attributed to exogenous trypsin, but only a minor part of the total enzyme activity will have its source in the ingested food organisms. The major part is synthesized by the larva itself as a reaction to physical stimulation due to food ingestion (Fänge and Grove, 1979; Hjelmeland et al., 1988; Pedersen and Hjelmeland, 1988; Pedersen and Andersen, 1992).

The calibration of the indicator trypsin with larvae reared under controlled laboratory conditions is very important in the application of this methodical approach to any population of fish larvae with an unknown feeding history in order to determine their nutritional condition, even in field samples. At present, detailed calibration data are available for herring and turbot larvae as shown in this study. It is thought that each species exhibits its own characteristic trypsin enzyme activity level in relation to its current nutritional condition. Herring larvae deprived of food reacted first with a slight decrease in enzyme activity but starving for a longer period resulted in significant differences when compared with continuously fed larvae. Additionally, a pronounced age and length dependency in relation to enzyme activity was detected, which has to be taken into account when applying these baseline values to field samples. Compared to herring larvae, turbot larvae respond to food deprivation with a much more pronounced and faster decrease in trypsin enzyme activity. The absolute values for trypsin enzyme activity in fed turbot larvae are also much higher than in herring. The values found for starving herring larvae (as shown in Fig. 2 and used in this study for comparison with herring and sprat larvae sampled from the field) could not be applied to turbot larvae from the field, for instance. The development of mean trypsin enzyme activity in fed larvae of cod, herring, and turbot with age is shown in Figure 4, indicating significant differences between turbot and the other two species and can be an indication of differences in functional development of the digestive tract in fish larvae. Success in larval turbot rearing in aquaculture may be attributed in part to the rapid development of their digestive capacity, which is expressed by the high level of proteolytic enzyme activity, as found with trypsin and pepsin (Ueberschär, 1993).

Further aspects of the application of trypsin enzyme activity measurements concern the quantity, quality, and time of feeding in aquaculture. With turbot larvae, it was shown that food density influences the amount of trypsin enzyme activity per larva and ultimately the growth rate. Permanently inadequate food supply may result in reduced growth rate, an important aspect for successful aquaculture. In laboratory calibration experiments, it was shown that feeding time influences the amount of trypsin enzyme activity measured. From the practical point of view, in laboratory and field research, time of sampling should be taken into account when measurements of trypsin enzyme activity are used to...
evaluate larval condition. In aquaculture, continuous individual monitoring of larval trypsin enzyme activity can give indications about feeding activity, feeding success, and the optimal size of the feed ration which should be offered to a certain species. The results could be related to quantity and quality of food supplied and possibly certain other environmental factors. Infestation with parasites in experiments with turbot larvae resulted in reduced feeding activity and consequently in decreasing trypsin enzyme activity levels. Therefore trypsin enzyme activity measurements could be useful in detecting unfavourable health conditions.

In field investigations on larval fitness it is important to know how the physiology of fish larvae responds to subsequent poor feeding conditions. Experiments with turbot larvae deprived of food for 2 to 3 days showed no deficiencies in response to re-feeding conditions. When fed, a re-establishment of enzyme activity was observed without any noticeable delay with a pronounced increase compared to continuously fed turbot larvae. The response is certainly species and age dependent, but nevertheless the methodological approach can generally be used to determine experimentally the “point of no return” with different starvation or feeding periods.

The exact amount of starving herring larvae in the field sample can be determined by using the calibration data from laboratory-reared herring larvae. The example given compares larval cohorts from autumn and winter spawners. It was expected that larvae hatched in the autumn would have a higher probability of survival. Potentially more appropriate food resources are available at that time compared with the situation in the late winter season. The results confirm this assumption. With the autumn samples, no starving larvae were detected, whereas in the sample of winter spawners 9.1% larvae were in poor condition. Furthermore,
herring larvae from field samples showed, in the main, higher trypsin levels than fed laboratory-reared intervals. This can be explained by the different food quality. It must be assumed that wild larvae mostly feed on food of optimal quality, whereas cultured larvae are given food of questionable quality. Commonly used rotifers and even enriched Artemia nauplii still cannot substitute for natural plankton. These results indicate the value of digestive enzyme activity measurements when food quality is being investigated.

In a field study, calibration data from herring were applied to sprat larvae sampled throughout the whole major spawning season in 1991 in the German Bight. This study was aimed at the recruitment variability of clupeiform species and the condition analysis is intended to give information about favourable or unfavourable conditions for the sprat larvae at a certain time. The surviving juveniles can be counted and their hatching date can be "back-calculated" by otolith reading. High survival rates should be reflected in fewer starving larvae for the corresponding hatching period. Analysis of survival rates of the juveniles, condition data, potential zooplankton abundance, and abiotic factors (hydrography) can result in new information on the conditions which are particularly favourable for larval survival in the field. The application of herring calibration data to sprat larvae from field investigations has uncertainties in the prediction of starvation, but will not have a strong influence on the relative relationship when different larval cohorts are compared. The results presented in this study identified two favourable periods and this should be reflected by high survival rates of the juveniles from the related hatching period (data are still being processed and will be presented in future publications).
As shown by the experimental results of this study, fish larvae have a natural diurnal rhythm in trypsin enzyme activity and the feeding rhythm of sardine larvae sampled on a 48 h drift station (Fig. 9) was determined in order to show their diurnal feeding pattern. No significant differences in the mean length distribution were found; diurnal pattern in trypsin enzyme activity is therefore likely to be a reaction to feed ingestion. Oscillations of trypsin enzyme activity can be regarded as a consequence of periodic food ingestion. The main feeding time is supposed to be at dusk. Main digestion periods are indicated by the highest enzyme activity values, which were found from midnight until the early morning. As shown with the diurnal pattern of continuously-fed herring larvae for instance, the lower pre-feeding level did not drop below the level for starving larvae. Consequently the minimum in enzyme activity does not indicate starving sardine larvae. The proposed feeding time is confirmed by observations about the volume of the gas bladder as found in analysed sardine larvae. In four of the 16 samples taken on the drift station, a high percentage of larvae with inflated gas bladders were observed during the night (between midnight and 0330). With an inflated gas bladder, larvae find swimming activity difficult, and it is assumed that they are unable to feed during this period. The background for the periodic inflation of the gas bladder is not yet clear (Hoss et al., 1989). One reason for this behaviour could be that neutral buoyancy allows the larvae to “rest” in order to conserve energy which can be invested in digestion processes. Additionally, in order to inflate the gas bladder, the larvae must migrate to the surface, where, in most areas, surface temperature is higher than in the deeper layers. Higher temperatures increase the rate of biochemical reactions and metabolic processes in poikilotherms (RGt-rule), and digestion would be enhanced by this behaviour.

Summarizing the results presented in this study, the application of trypsin enzyme activity measurement on field samples can serve to determine relative differences in the number of larvae in poor condition, and this approach can be applied to aquaculture, for instance when different feeding regimes are employed or in open systems such as net cages, where larvae are fed with natural plankton. Periodic monitoring of larval condition can give an indication of the survival of larvae and can indicate causes of year-to-year variability.

References
Solemdal, Institute of Marine Research, Flødevigen Biological Station.