The Northern Giudicarie and the Meran-Mauls fault (Alps, Northern Italy) in the light of new paleomagnetic and geochronological data from boudinaged Eo-/Oligocene tonalites.

Pomella, Hannah, Klötzli, Urs, Scholger, Robert, Stipp, Michael and Fügenschuh, Bernhard (2011) The Northern Giudicarie and the Meran-Mauls fault (Alps, Northern Italy) in the light of new paleomagnetic and geochronological data from boudinaged Eo-/Oligocene tonalites. International Journal of Earth Sciences, 100 (8). pp. 1827-1850. DOI 10.1007/s00531-010-0612-4.

[img] Text
Pomella.pdf - Published Version
Restricted to Registered users only

Download (3831Kb) | Contact

Supplementary data:

Abstract

This study concentrates on small intrusions along two important faults of the Giudicarie fault system, the Northern Giudicarie and the Meran-Mauls fault, summarised under the term tonalitic lamellae. Magnetic fabric analyses in combination with structural field data indicate dextral strike slip deformation along the NE–SW striking northern part of the Giudicarie fault system, the Meran-Mauls fault, overprinted by younger thrusting. The regional stressfield was oriented approximately NNW–SSE during Tertiary times. The distinctive change in deformation along the Meran-Mauls fault from dextral strike slip to top-SE thrusting may be caused by a rotation or bending of the fault after the intrusion of the tonalites and the formation of their horizontal magnetic foliation. Based on the assumption of a preliminary straight Periadriatic lineament bent by the NNW-wards advancement of the Southalpine indenter, the tonalitic lamellae may be interpreted as lenses sheared off from the Adamello batholith during indentation. New U/Pb data on zircon show that some of the lamellae are of Oligocene (Rupelian), others of Late Eocene (Priabonian) age. An amphibole-gabbro lens occurring on the Meran-Mauls fault provides a Middle Eocene (Bartonian) age. Among the major Periadriatic plutons, only the southern units of the Adamello batholith also intruded in the Eocene that suggests a strong correlation between the tonalitic lamellae and the Adamello batholith. The analyses of the remanent magnetisation and the Curie point determinations argue for magnetite as the main carrier of a viscous magnetisation blocked at relatively low temperatures. This indicates slow cooling of the investigated intrusions along the Giudicarie fault system down to approximately 300°C, which is in contrast to the fast cooling determined for the Adamello intrusion units currently at the surface. The new zircon fission track data also show later cooling of the tonalites along the Giudicarie fault system when compared with the Adamello batholith in the south and the Mauls lamellae in the north, indicating that this area contains magmatic bodies exhumed from a deeper structural level than in the Adamello and the Mauls region. This may be due to important top-SE thrusting and transpressive faulting in the footwall of the Northern Giudicarie fault and the Meran-Mauls fault.

Document Type: Article
Keywords: Geophysics; Geochemistry; Periadriatic intrusions – Giudicarie fault system – Fission track dating – U/Pb laser ablation ICP-MS – Anisotropy of magnetic susceptibility
Research affiliation: OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-GDY Marine Geodynamics
Refereed: Yes
Open Access Journal?: No
DOI etc.: 10.1007/s00531-010-0612-4
ISSN: 1437-3254
Date Deposited: 15 Dec 2011 11:22
Last Modified: 04 Jul 2018 07:33
URI: http://oceanrep.geomar.de/id/eprint/13005

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...