Dynamic Analysis for Model-Driven Software Modernization

André van Hoorn2 (avh@informatik.uni-kiel.de),
Software Engineering Group, University of Kiel, Germany

S. Frey2, W. Goerigk1, W. Hasselbring2, H. Knoche1, S. Köster4,
H. Krause3, M. Porembski4, T. Stahl1, M. Steinkamp4, and N. Wittmüss3

March 01, 2011 @ MDSM Workshop, Oldenburg

The DynaMod project is funded by the German Federal Ministry of Education and Research (BMBF) under grant no. 01IS10051
Kiel — “the City by the Sea” [Kie]

Oldenburg (Oldb)

Kiel
Kiel — “the City by the Sea” [Kie]

Photo: http://www.port-of-kiel.de/
Overview of Project Topic

DynaMod
Dynamic Analysis for Model-Driven Software Modernization

Motivation

- Long-lived software systems require continuous modernization
- System behavior & usage important for modernization decisions
- MDSD techniques promise high degree of automation
Overview of Project Topic

DynaMod

Dynamic Analysis for Model-Driven Software Modernization

Motivation

- Long-lived software systems require continuous modernization
- System behavior & usage important for modernization decisions
- MDSD techniques promise high degree of automation

Methodology

- Combining static and dynamic analysis for model reconstruction
- Model enrichment supporting reverse and forward engineering
- Architectural transformation from outdated to modernized system
- Generating code & tests employing mature MDSD techniques

André van Hoorn (Univ. Kiel) et al.
DynaMod Project — http://kosse-sh.de/dynamod/
March 01, 2011 3 / 17
Overview of Project Topic

DynaMod
Dynamic Analysis for Model-Driven Software Modernization

Motivation
- Long-lived software systems require continuous modernization
- System behavior & usage important for modernization decisions
- MDSD techniques promise high degree of automation

Methodology
- Combining static and dynamic analysis for model reconstruction
- Model enrichment supporting reverse and forward engineering
- Architectural transformation from outdated to modernized system
- Generating code & tests employing mature MDSD techniques

Expected Results
- Developing resuable methods, techniques, and tools for MDM
- Evaluation by 3 representative case studies
- Sustainable value of models for MDSD-based evolution & operation

André van Hoorn (Univ. Kiel) et al. DynaMod Project — http://kosse-sh.de/dynamod/ March 01, 2011
Project Consortium & Funding

Project Consortium:

1. **b+m Informatik AG**

 (Development partner, consortium leader)

 - Comprehensive MDSD know-how
 - Initiated openArchitectureWare (oAW)

DynaMod
Project Consortium & Funding

Project Consortium:

1. **b+m Informatik AG**
 - *Development partner, consortium leader*
 - Comprehensive MDSD know-how
 - Initiated openArchitectureWare (oAW)

2. **Software Engineering Group, Univ. Kiel**
 - *Research partner*
 - Model-driven engineering, operation, and evolution of software systems
 - Emphasis on software quality (of service)
Project Consortium:

1. **b+m Informatik AG**
 - *(Development partner, consortium leader)*
 - Comprehensive MDSD know-how
 - Initiated openArchitectureWare (oAW)

2. **Software Engineering Group, Univ. Kiel**
 - *(Research partner)*
 - Model-driven engineering, operation, and evolution of software systems
 - Emphasis on software quality (of service)

3. **Dataport**
 - *(Associated partner)*
 - Provides ICT services for public/tax administrations

Data:
- [b+m Informatik AG](http://www.bmiag.de/)
- [Software Engineering Group, Univ. Kiel](http://se.informatik.uni-kiel.de/)
- [Dataport](http://www.dataport.de/)

[André van Hoorn](http://kosse-sh.de/dynamod/) et al.

DynaMod Project — http://kosse-sh.de/dynamod/

March 01, 2011
Project Consortium:

1. **b+m Informatik AG**
 - *(Development partner, consortium leader)*
 - Comprehensive MDSD know-how
 - Initiated openArchitectureWare (oAW)

2. **Software Engineering Group, Univ. Kiel**
 - *(Research partner)*
 - Model-driven engineering, operation, and evolution of software systems
 - Emphasis on software quality (of service)

3. **Dataport**
 - *(Associated partner)*
 - Provides ICT services for public/tax administrations

4. **HSH Nordbank AG**
 - *(Associated partner)*
 - Leading bank for corporate and private clients in northern Germany
Project Consortium:

1. **b+m Informatik AG**
 (Development partner, consortium leader)

2. **Software Engineering Group, Univ. Kiel**
 (Research partner)

3. **Dataport**
 (Associated partner)

4. **HSH Nordbank AG**
 (Associated partner)

Funding:

- BMBF “KMU-innovativ”
- 2 years (01/11–12/12)
The horseshoe model — “A visual metaphor of the integration of code-level and architectural reengineering views of the world” [KWC98]
Working Packages & Involved Technologies

Working Packages:

WP 1: Static Analysis
WP 2: Dynamic Analysis
WP 3: Definition of Transformations
WP 4: Code Generation
WP 5: Model-Based Testing
WP 6: Evaluation

Involved Technologies:

- Eclipse Modeling Framework/Project (EMF [SBPM09], EMP [ecl10]) for meta-modeling and tooling
- DSLs based on OMG’s ADM meta-models (KDM [Obj09a], SMM [Obj09b] et al.)
- Kieker [vHRH09] for dynamic analysis (monitoring, reconstruction, visualization etc.)
- Apache JMeter [Apa] & Markov4JMeter [vHRH08] for model-based testing
Working Packages & Involved Technologies

Working Packages:

WP 1 Static Analysis
WP 2 Dynamic Analysis
WP 3 Definition of Transformations
WP 4 Code Generation
WP 5 Model-Based Testing
WP 6 Evaluation

Involved Technologies:

- Eclipse Modeling Framework/Project (EMF [SBPM09], EMP [ecl10]) for meta-modeling and tooling
- DSLs based on OMG’s ADM meta-models (KDM [Obj09a], SMM [Obj09b] et al.)
- Kieker [vHRH+09] for dynamic analysis (monitoring, reconstruction, visualization etc.)
- Apache JMeter [Apa] & Markov4JMeter [vHRH08] for model-based testing
- Legacy technology (VB6, Natural etc.) subject to modernization (next slides)
Case Study Scenarios

1. AIDA-SH (Dataport)

- Information management and retrieval system for inventory data of historical archives
- Client/server architecture
- Technologies
 - Visual Basic 6
 - MS SQL Server (7.0, 2000, 2003) and MSDE
- Impulse for modernization
 - Outdated technology
- Representative of many modernization projects
Nordic Analytics (HSH Nordbank AG)

- Function library for assessment and risk control of finance products
- Deployments
 1. Desktop installations (Excel front-end)
 2. Trading systems
 3. Batch processing systems
- C# implementation
- Impulse for modernization
 - Architectural restructuring
Case Study Scenarios (cont’d)

3 Permis-B (Dataport)

- System for managing health care allowance
- Complex and critical
- Technologies
 - z/OS (mainframe OS)
 - Adabas-C (DBMS)
 - Natural (online) & COBOL (batch)
 - EskerTun/HOBLink (terminal emulation)
 - ApplinX (web GUI)
- Impulses for modernization
 - Outdated technology
 - Eroded architecture
Core Characteristics [vHRH⁺ 09]

- **Flexible architecture** (custom *probes, readers, writers, analysis plug-ins*)
- **Integrated & extensible record type model** for monitoring & analysis
- **Logging, reconstruction, analysis/visualization of (distributed) traces**
- **Low overhead** (designed for continuous operation in multi-user systems)
- **Evaluated in industry case studies**

http://kieker.sourceforge.net
Kieker Framework for Dynamic Analysis

Core Characteristics [vHRH+09]

- Flexible architecture (custom probes, readers, writers, analysis plug-ins)
- Integrated & extensible record type model for monitoring & analysis
- Logging, reconstruction, analysis/visualization of (distributed) traces
- Low overhead (designed for continuous operation in multi-user systems)
- Evaluated in industry case studies

Kieker.Monitoring
- Monitoring Probe
- Monitoring Controller
- Monitoring Log Writer

Kieker.Analysis
- Analysis Plug-In
- Analysis Controller
- Monitoring Log Reader

Monitoring log
- e.g., AOP-based method call interception
- e.g., trace information, workload, response times, resource utilization, loop counts
- e.g., architecture reconstruction, performance evaluation, online adaptation control, failure diagnosis
- e.g., file system, database, message-oriented middleware

http://kieker.sourceforge.net

André van Hoorn (Univ. Kiel) et al.
DynaMod Project — http://kosse-sh.de/dynamod/
March 01, 2011 10 / 17
Sequence Diagrams
Visualization Examples

(a) Assembly-level view

(b) Deployment-level view

André van Hoorn (Univ. Kiel) et al.
DynaMod Project — http://kosse-sh.de/dynamod/
March 01, 2011 11 / 17
(a) **Assembly-level component** dependency graph

(b) **Deployment-level operation** dependency graph
Dynamic Call Trees
Visualization Examples (cont’d)

(a) Dynamic call tree (single trace)

(b) Aggregated deployment-level call tree
Kieker.TraceAnalysis Tool

System Model Repository

Message Trace Sink Plug-Ins

Execution Trace Sink Plug-Ins

Sequence diagrams, Dependency graphs, Dynamic call trees, System model (html), ...

Kieker.Analysis

Execution Filter

Trace Reconstruction Filter

...
Instrumentation of Visual Basic 6 Code

Uninstrumented VB 6 code

```vbnet
Public Sub searchBook()

    Call catalog.getBook(False)

    Call crm().getOffers

End Sub
```
Instrumentation of Visual Basic 6 Code

Manually instrumented VB 6 code (Kieker.VB6)
VB 6 code instrumentation by annotation
Call catalog.getBook(False)
Static analysis

Call catalog.getBook(False)
catalog.getBook(False)
Model-Driven Instrumentation & Analysis

André van Hoorn (Univ. Kiel) et al. DynaMod Project — http://kosse-sh.de/dynamod/ March 01, 2011 16 / 17
Model-Driven Instrumentation & Analysis

Dim tin As Variant
Dim tout As Variant
Dim r As OperationExecutionRecord

' 1.) Calls the Catalog component's getBook() method and logs its entry and exit timestamp using Kieker
Set r = New OperationExecutionRecord
tin = monitoringCtrl.currentTimeNanos
Call catalog.getBook(False)
tout = monitoringCtrl.currentTimeNanos
Call r.initField("Catalog", "getBook", index, tin, tout, 1, 1)
Call monitoringCtrl.writeRecord(r)
Call catalog.getBook(False)

'@OperationExecutionMonitoringProbe() Call catalog.getBook(False)

Dim tin As Variant
Dim tout As Variant
Dim r As OperationExecutionRecord

' 1.) Calls the Catalog component's getBook() method and logs its entry and exit timestamp using Kieker
Set r = New OperationExecutionRecord
tin = monitoringCtrl.currentTimeNanos
Call catalog.getBook(False)
tout = monitoringCtrl.currentTimeNanos
Call r.initField("Catalog", "getBook", index, tin, tout, 1, 1)
Call monitoringCtrl.writeRecord(r)
Additional Information:

- http://kosse-sh.de/dynamod (in German)
Apache Software Foundation.
Apache JMeter – homepage.

Eclipse Modeling Project.

Kiel — A City Portrait.
http://www.kiel.de/Aemter_01_bis_20/06/Stadtpartrait_English/cityportrt1.htm.

Requirements for integrating software architecture and reengineering models: CORUM II.

Object Management Group, Inc.

Object Management Group, Inc.

David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework.

Thomas Stahl and Markus Völter.

DynaMod project: Dynamic analysis for model-driven software modernization.
Invited paper.

André van Hoorn, Matthias Rohr, and Wilhelm Hasselbring.

Markov4JMeter: Generating probabilistic workload for web-based applications.
In *30th International Conference on Software Engineering (ICSE ’08)*, 2008.
rejected.

André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens Ehlers, Sören Frey, and Dennis Kieselhorst.

Continuous monitoring of software services: Design and application of the Kieker framework.
Technical Report TR-0921, Department of Computer Science, University of Kiel, Germany, November 2009.