KLASSIFIKATION DER WETTERLAGEN ÜBER
DEM WETTERSCHIFF C DURCH VERTIKALE
NATÜRLICHE ORTHOGONALFUNKTIONEN

Freie wissenschaftliche Arbeit
zur Erlangung des Grades
eines Diplommeteorologen
des Fachbereichs Mathematik-Naturwissenschaften
der
Christian-Albrechts-Universität
zu Kiel

DOI 10.3289/IFM_BER_35

vorgelegt von Uwe Kaminski

Kiel
1977
CLASSIFICATION OF THE WEATHER
SITUATIONS AT OCEAN WEATHERSHIP-C-
BY VERTICAL EMPIRICAL ORTHOGONAL
FUNCTIONS

Requesters may obtain copies of this report from

Uwe Kaminski
Institut für Meereskunde
Abt. Maritime Meteorologie
Düsternbrooker Weg 20
D 2300 Kiel 1
ZUSAMMENFASSUNG

Eine Betrachtung der Fehlerquadrate der Teilreihen zeigt aber, daß nur die ersten neun Orthogonalfunktionen eine meteorologische Information enthalten, und für die meteorologische Interpretation erweisen sich sogar nur die ersten fünf Orthogonalfunktionen als sinnvoll. Bei Abbruch nach dem 5. Glied beträgt der mittlere Fehler etwa 16 %.

Um die jahreszeitlichen Schwankungen der Orthogonalfunktionen zu untersuchen, werden sie für jedes Vierteljahr separat und das ganze Jahr des gesamten Zeitraumes berechnet.

Zum Schluß werden am Beispiel des Monats Februar 1964 die zeitabhängigen Koeffizienten der wichtigsten natürlichen Orthogonalfunktionen dargestellt und ihr Zusammenwirken anhand synoptischer Wetterkarten erläutert und diskutiert.

Es kann gezeigt werden, daß man mit den ersten fünf Koeffizienten die Wetterlage in ersten Ansätzen recht gut erfaßt.
Durch den ersten Koeffizienten läßt sich die Luftmasse-
eigenschaft "tropisch, gemäßigt, polar" beschreiben.
Der 2.- und 3. Koeffizientklassifiziert genau die Rich-
tung der Höhenströmung. Wandernde Zyklen mit den azu-
gehörigen Fronten schlagen sich besonders im 4. Koeffi-
zienten nieder. Schließlich macht der 5. Koeffizient eine
Aussage über die Stabilität der Schichtung in der unteren
Atmosphäre.
ABSTRACT

The data of geopotential height, temperature, humidity and wind, measured by radiosonde ascents during the period of 1.1.1948 - 31.12.1965 are expanded into vertical, empirical, thus climatological orthogonal functions.

First the long term climatological annual range is calculated for all parameters and for each level and is expanded in Fourier Series of a limited number.

The deviations from the smoothed annual range are expanded into empirical orthogonal functions.

Each function includes the information from all above mentioned parameters. As there are 63 numbers of freedom, 63 orthogonal functions can be computed. A consideration of the standard deviation of the truncated series, however, suggests that only the first nine orthogonal functions include meteorological information.

For a meteorological interpretation, moreover, only the first five orthogonal functions have a significant meaning.
On truncating the series after the 5th mode the standard deviation amounts to about 16 per cent.

The seasonal deviation of the orthogonal functions is examined by computing it for every three months separately and for the whole year of the calculation period.

As an example finally the time-depending coefficients of the most important empirical functions are demonstrated for the month of February 1964.
The interactive influence of the coefficients is explained and discussed with the means of synoptic charts.

It can be proved that the first 5 coefficients can give a rather good preliminary impression of the weather situation.

The first coefficient describes the air-mass characteristics as "tropical, temperate, polar".

The 2nd and 3rd coefficient exactly classify the 500 mb flow direction. Transient eddies and corresponding frontal transitions are well represented by the 4th coefficient. Last not least the 5th coefficient informs about the stability of the lower atmosphere.
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Thema</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Einleitung</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Auswahl der Daten</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Theorie der natürlichen Orthogonalfunktionen</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Aufbereitung der Daten</td>
<td>9</td>
</tr>
<tr>
<td>4.1</td>
<td>Mittelung und Glättung durch Fourieranalyse</td>
<td>9</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Darstellung der mittleren klimatologischen Verhältnisse über dem OWS-C</td>
<td>11</td>
</tr>
<tr>
<td>4.2</td>
<td>Wichtung der verschiedenen Messgrößen</td>
<td>30</td>
</tr>
<tr>
<td>5.</td>
<td>Berechnung der vertikalen natürlichen Orthogonalfunktionen</td>
<td>37</td>
</tr>
<tr>
<td>5.1</td>
<td>Bildung der verschiedenen Kovarianzmatrizen</td>
<td>38</td>
</tr>
<tr>
<td>5.2</td>
<td>Das Jacobische Iterationsverfahren</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>Diskussion der natürlichen Orthogonalfunktionen für das gesamte Jahr</td>
<td>41</td>
</tr>
<tr>
<td>6.1</td>
<td>Fehlerbetrachtung</td>
<td>41</td>
</tr>
<tr>
<td>6.2</td>
<td>1. Orthogonalfunktion</td>
<td>43</td>
</tr>
<tr>
<td>6.3</td>
<td>2. und 3. Orthogonalfunktion</td>
<td>47</td>
</tr>
<tr>
<td>6.4</td>
<td>4. Orthogonalfunktion</td>
<td>53</td>
</tr>
<tr>
<td>6.5</td>
<td>5. Orthogonalfunktion und höhere Ordnungen</td>
<td>56</td>
</tr>
<tr>
<td>7.</td>
<td>Darstellung und Diskussion der Änderung der 1. Orthogonalfunktion in vier verschiedenen Jahreszeiten</td>
<td>60</td>
</tr>
<tr>
<td>8.</td>
<td>Einfluß der Länge des Untersuchungszeitraumes auf die natürlichen Orthogonalfunktionen</td>
<td>64</td>
</tr>
<tr>
<td>9.</td>
<td>Berechnung und Diskussion der zeitabhängigen Koeffizienten $c_{i,t}$ für die ersten fünf Orthogonalfunktionen</td>
<td>70</td>
</tr>
</tbody>
</table>
9.1. Zeitreihen der Koeffizienten c_1 bis c_5 vom 1. bis 29. Februar 1964

9.2. Beschreibung der zeitabhängigen Koeffizienten $c_{i,t}$ anhand von synoptischen Wetterkarten

10. Schluß

Literaturverzeichnis

Verzeichnis der benutzten Symbole
1. EINLEITUNG.

In der vorliegenden Arbeit sollen die bei jahrelangen Routinemessungen gewonnenen meteorologischen Daten von Geopotential, Temperatur, Feuchte und Wind über dem OWS-C- durch vertikale natürliche Orthogonalfunktionen dargestellt werden.

Die hier vorgelegte Arbeit unterscheidet sich von der letzten im wesentlichen durch die Lage der Station (Seestation) und dadurch, daß der Jahresgang schon vorher herausgenommen wurde. Außerdem gehen in dieser Arbeit vier physikalische Meßgrößen - Geopotential, Temperatur, Feuchte und Wind - jeweils gemeinsam in einen Datenvektor ein. Die einzelnen natürlichen Orthogonalfunktionen beschreiben also die vertikalen Korrelationen und die Korrelationen zwischen diesen vier verschiedenen physikalischen Meßwerten der Aufstiege.

Als Anwendung sollen später die Orthogonalfunktionen eine objektive Luftmassenklassifikation über dem OWS-C-ermöglichen.

2. AUSWAHL DER DATEN

Abb. (1) zeigt die Lage des Wetterschiffs -52°45'N, 35°30'W - südlich von Grönland.

Die Originaldaten enthalten die Meßgrößen Geopotential, Temperatur, relative Feuchte, Windrichtung und Windgeschwindigkeit, und zwar abgesehen von der Feuchte, vom Boden an aufwärts bis 100 mb in 50 mb Intervallen. Die Feuchte wurde nur bis 400 mb gemessen.

Hätte man, um die Vollständigkeit des Datensatzes zu wahren und um nicht nur ausgewählte Niveaus zu untersuchen, der Berechnung diese Daten zugrundegelegt, so wären ziemlich große Datenlücken aufgetreten.

Eine erste Untersuchung der Daten ergab, daß nur etwa zwei Drittel der Aufstiege ganz vollständig waren und
Abb. 1 Lage des OWS-C
besonders in den Anfangsjahren und in der oberen Troposphäre starke Meßlücken auftraten.

Dadurch würde sich bei der Berechnung der Orthogonalfunktionen eine relativ geringe statistische Absicherung ergeben. Aus diesem Grund wurde der Berechnung ein anderer, bereits aufgearbeiteter Datensatz zugrundegelegt, bei dem allerdings nicht mehr alle Meßgrößen eines Terms organisiert gespeichert waren, wie es für die spätere Berechnung erforderlich ist. Dafür wurden aber fehlende Werte interpoliert und falsche ganz ausgesiebt.

Außerdem waren bereits die relative Feuchte in die spezifische Feuchte umgerechnet und der Windvektor in seine u- und v-Komponente, also in den zonalen und meridionalen Anteil zerlegt. Es handelt sich hierbei um Zeitreihen für jede Meßgröße und jedes Niveau.

Da fehlende Meßwerte der ersten Jahre vorwiegend extrapoliert wurden und für die Berechnung des Jahresganges eine gleiche Anzahl von Monaten notwendig ist, wurde schließlich für die Berechnung die Zeit vom 1.1.1948 bis 31.12.1965, also 18 Jahre, ausgewählt.

Als vertikale Meßpunkte wurden so viele Niveaus wie möglich herangezogen, und zwar Geopotential und Temperatur von 1000- bis 100 mb und die spezifische Feuchte von 1000- bis 400 mb, alles in 50 mb Intervallen, wodurch eine Wichtung der einzelnen Niveaus entfällt.

Damit ergeben sich bereits 51 Meßwerte pro Radiosonden- aufstieg. Aus Gründen der Rechenkapazität konnte für die u- und v-Komponente des Windes daher nicht mehr jedes einzelne Niveau berücksichtigt werden.

Die Windkomponenten mußten also für die Berechnung der natürlichen Orthogonalfunktionen zwangsläufig vertikal über jeweils drei Niveaus gemittelt werden.

Man erhält so die mittleren Windanteile für jeweils
sechs verschiedene Schichten:

Schicht 1	1000-950-900 mb	\(\bar{u}_1, \bar{v}_1 \)
Schicht 2	850-800-750 mb	\(\bar{u}_2, \bar{v}_2 \)
Schicht 3	700-650-600 mb	\(\bar{u}_3, \bar{v}_3 \)
Schicht 4	550-500-450 mb	\(\bar{u}_4, \bar{v}_4 \)
Schicht 5	400-350-300 mb	\(\bar{u}_5, \bar{v}_5 \)
Schicht 6	250-200-150 mb	\(\bar{u}_6, \bar{v}_6 \)

Insgesamt ergeben sich damit pro Termin jeweils 63 Messwerte, die alle gemeinsam in die Berechnung der vertikalen natürlichen Orthogonalfunktionen eingehen.

Da man 63 Freiheitsgrade hat, lassen sich auch 63 Orthogonalfunktionen berechnen.

3. THEORIE DER NATÜRLICHEN ORTHOGONALFUNKTIONEN

Es soll und kann nicht die Aufgabe dieser Arbeit sein, die Theorie noch einmal in all ihren Einzelheiten und mit den dazugehörigen Beweisen darzulegen. Die Theorie soll nur so knapp wie möglich und wie es zum Verständnis der Arbeit unbedingt notwendig ist, erörtert werden.

Für die ausführliche Theorie sei auf die angegebene Literatur verwiesen.

Um eine beliebige mathematische Funktion \(\bar{f}_t = (\bar{f}_1, \bar{f}_2, \ldots, \bar{f}_{63}, \bar{v}) \) (in diesem Fall ist es ein Radiosondenaufstieg mit 63 Meßgrößen, also eine Funktion mit den Variablen \(p, \phi, T, q, u, v \)) im Mittel anzunähern, bedient man sich häufig der Methode der kleinsten Abweichungssquadrate.
Mit dieser Methode läßt sich eine vorgegebene Funktion \(\hat{f}_t \) in einem bestimmten Intervall im Mittel durch eine Reihe aus zwei Faktoren darstellen

\[
\hat{f}_t = \sum_{i=1}^{63} c_{i,t} \hat{p}_i
\]

(3.1)

Die Funktion \(\hat{f}_t \) wird auch als Datenvektor bezeichnet, da als Komponenten die 63 Meßwerte eingehen.

Wie in einem der nächsten Kapitel noch näher erläutert wird, gehen nicht die Meßwerte direkt ein, sondern die Abweichungen vom geglätteten Mittelwert.

Die Größe \(\hat{p}_i \) ist nur vom Luftdruck und der darzustellenden Meßgröße abhängig. \(\hat{p}_i \) heißt i-te natürliche Orthogonalfunktion und \(c_{i,t} \) ihr Koeffizient, falls die Reihenglieder die nachfolgende Extremalbedingung und die \(c_{i,t} \) noch zusätzlich die Normierungsbedingung erfüllen.

Die Orthogonalfunktionen werden "natürlich" oder auch "empirisch" genannt, weil sie ausschließlich durch die Meßwerte geprägt werden.

Der Koeffizient \(c_{i,t} \) hängt nur von der Zeit \(t \) ab.

Wenn man die Reihenentwicklung auf der rechten Seite von (3.1) bereits nach dem \(n \)-ten Reihenglied abbricht, so erhält man eine Teilreihe, die mit \(\hat{f}_{t,n} \) bezeichnet wird

\[
\hat{f}_{t,n} = \sum_{i=1}^{n} c_{i,t} \hat{p}_i
\]

(3.2)

Der Fehler \(\hat{f}_{t,n} \) beträgt dabei

\[
\hat{f}_{t,n} = \hat{f}_t - \hat{f}_{t,n} = \sum_{i=n+1}^{63} c_{i,t} \hat{p}_i
\]

(3.3)

Bildet man das innere Produkt dieser Fehler und mittelt über den gesamten Zeitraum, so erhält man nach einer Wurzelziehung den mittleren quadratischen Fehler der nach dem \(n \)-ten Reihenglied abgebrochenen Teilreihe
\[F_n = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (P_{t,n}^* P_{t,n})} \]

(3.4)

Wie weiter unten gezeigt wird, erfolgt die Bildung der inneren Produkte in der Matrix, außerdem entfällt die Wurzelziehung, da man die Quadrate minimiert.

Die \(c_{i,t} \) und die \(\tilde{P}_i \) bestimmt man der Reihe nach in solcher Weise, daß der mittlere quadratische Fehler \(F_n \) für \(n = 1, 2, \ldots, 62 \) minimal wird.

Aus dieser notwendigen Bedingung folgt nach den Regeln der Variationsrechnung

\[\frac{\partial}{\partial c_{i,t}} F_n = 0 \quad \text{für} \quad i = 1, \ldots, n \]

(3.5)

\[\frac{\partial}{\partial \tilde{P}_i} F_n = 0 \quad \text{für} \quad i = 1, \ldots, n \]

(Extremalbedingung)

Ist die Extremalbedingung erfüllt, so sind sowohl die zeitabhängigen Koeffizienten \(c_{i,t} \) als auch die \(\tilde{P}_i \) orthogonal

\[\frac{1}{T} \sum_{t=1}^{T} c_{i,t} \cdot c_{j,t} = \begin{cases} 0 & \text{für} \quad i \neq j \\ 1 & \text{für} \quad i = j \end{cases} \]

(3.6)

\[(\tilde{P}_i \cdot \tilde{P}_j) = \begin{cases} 0 & \text{für} \quad i \neq j \\ \lambda_i^2 & \text{für} \quad i = j \end{cases} \]

(3.7)

Die Normierung der \(c_{i,t} \) auf 1 ist so gewählt, daß die \(c_{i,t} \) dimensionslos bleiben. Die natürlichen Orthogonalfunktionen haben dann die gleiche Dimension wie die Datenvektoren. Die Theorie der natürlichen Orthogonalfunktionen (s. z. B. LORENZ) zeigt außerdem, daß die \(\lambda_i^2 \) die Eigenwerte und die \(\tilde{P}_i \) die dazugehörigen Eigenvektoren der Kovarianzmatrix

\[A = a_{p,q} \]

mit \[a_{p,q} = \frac{1}{T} \sum_{t=1}^{T} f_{p,t} \cdot f_{q,t} \]

(3.8)

sind.
Die Eigenwerte sind durch die Eigenwertgleichung der Kovarianzmatrix \(A \) definiert.

\[
A \cdot \hat{p}_i = \lambda_i^2 \hat{p}_i
\]

(3.9)

Darin sind die \(\hat{p}_i \) die Eigenfunktionen der Matrix \(A \).
Sie werden auch als \(i \)-te natürliche ungewichtete Orthogonalfunktion bezeichnet.

Wie man später sehen wird, haben die Eigenwerte die Dimension einer Energie. Sie geben das Maß der Varianz, also die Bedeutung der einzelnen Funktionen an.

Durch ein Zusatzprogramm von H. FECHNER sind die Eigenwerte \(\lambda_i^2 \) nach der Größe geordnet

\[
\lambda_i^2 \geq \lambda_{i+1}^2 \quad \text{für } i=1,\ldots,62
\]

Die natürlichen Orthogonalfunktionen enthalten alle Korrelationen zwischen den Meßwerten in verschiedenen Niveaus, aber auch alle Korrelationen zwischen den verschiedenen Meßgrößen.

Da mit wachsender Ordnung der Beitrag der einzelnen Orthogonalfunktionen ziemlich rasch abnimmt und keine meteorologische Information mehr bietet, kann man an einer bestimmten Stelle der Reihe abbrechen.

Man erhält die natürlichen Orthogonalfunktionen mit Hilfe des Jakobischen Iterationsverfahrens als Eigenfunktionen der Kovarianzmatrix. Obwohl sie eine kräftige Reduzierung des Datenmaterials darstellen, liefern sie dennoch eine optimale Klassifikation der Wettersituationen über dem OWS-C-.
4. AUFBEREITUNG DER DATEN

4.1. Mittelung und Glättung durch Fourieranalyse

Als Vorbereitung zur Berechnung der natürlichen Orthogonalfunktionen werden zunächst einmal die Einzelfälle der Meßgrößen - hier definiert durch die verschiedenen Termine - zu einem klimatologischen Mittelwert zusammengefaßt.

Die Varianz gibt dann die mittlere quadratische Abweichung der Meßgrößen vom Mittelwert an. Sie ist ein Maß für die Streuung der Meßgrößen um ihren Mittelwert.

Je mehr sich die mittlere quadratische Abweichung um den Mittelwert häuft, desto kleiner ist der Wert der Varianz.

Die Varianz kann sowohl von den Abweichungen vom Mittelwert als auch von den Meßgrößen selbst berechnet werden.

Da in der vorliegenden Untersuchung beabsichtigt ist, den Jahrestag zu berechnen und später zu eliminieren, wurde zunächst einmal für die fünf verschiedenen Meßgrößen und jedes Niveau ein über alle Termine monatlicher Mittelwert berechnet.

Insgesamt standen T = 13148 Termine zur Verfügung. So ergibt sich z.B. für die Temperatur in 500 mb ein Mittelwert über alle Januarmonate, Februarmonate etc. bis Dezember.

Für die Meßgrößen und alle Niveaus erhält man dadurch einen monatlichen Mittelwert, so daß man einmal den mittleren Jahrestag der klimatologischen Verhältnisse über der Station erhält, zum anderen aber auch einen guten Einblick in vertikale Zusammenhänge gewinnt.

Die Abweichungen der tatsächlichen Meßwerte vom mittleren Jahrestag stellen später die Grunddaten für die Berech-
nung der natürlichen Orthogonalfunktionen dar. Da bei
dieser Differenzbildung an den monatlichen Übergängen
Unstetigkeiten im Jahresgang auftreten können, schien
e es vorteilhafter, den mittleren Jahresgang durch eine
Fourierreihe mit einer beschränkten Anzahl von Gliedern
darzustellen. Der mittlere Jahresgang wird durch diese
Methode geglättet.

Als mathematisches Verfahren wurde die angenäherte harmo-
nische Fourieranalyse gewählt.

Die näherungsweise Berechnung der Koeffizienten der
Fourierreihe beruht auf dem Ersetzen der Integrale in
den Eulerschen Formeln durch Summen nach einer der For-
meln für die angenäherte Integration. Am günstigsten er-
weist sich hierbei die Trapezformel. Mit ihrer Hilfe
lassen sich die folgenden sogenannten Besselschen Formeln
für die harmonische Analyse gewinnen.

Die Periode T sei entsprechend den einzelnen Monaten in
12 gleiche Teile geteilt.

Die Abszissen der Teilpunkte seien $x_k = \frac{kT}{12}$,
die dazugehörigen Ordinaten $f(x_k) = y_k$ für $k=0,1,\ldots,12$.
Dann gilt angenähert

$$6 a_0 = \sum_{k=0}^{11} y_k$$

$$6 a_m = \sum_{k=0}^{11} y_k \cos \frac{k m \pi}{6} \quad m = 1,2,\ldots,6$$

$$6 b_m = \sum_{k=0}^{11} y_k \sin \frac{k m \pi}{6} \quad m = 1,2,\ldots,6$$

Bildet man die trigonometrische Summe

$$S_r(x) = \frac{a_0}{2} + \sum_{k=1}^{r} a_k \cos k \frac{2 \pi x}{T} + \sum_{k=1}^{r} b_k \sin k \frac{2 \pi x}{T}, \ r \in \mathbb{N}$$

so liefert diese Summe die beste Approximation im Sinne
der Methode der kleinsten Quadrate der Funktion, die durch die Ordinaten y_K (monatliche Mittelwerte) gegeben ist, wenn man ihre Koeffizienten nach den Besselschen Formeln berechnet. Als Ausgangsdaten ergeben sich damit die Abweichungen vom geglätteten mittleren klimatologischen Jahresgang.

Wie oben erwähnt, mußten die u- und v-Komponente des Windes aus Kapazitätsgründen über jeweils drei Niveaus vertikal gemittelt werden. Für den mittleren Jahresgang ergibt sich deshalb zwangsläufig das gleiche Verfahren.

Jeder monatliche Mittelwert dieser Meßgröße wurde vertikal hochmals über drei Niveaus gemittelt, so daß sich der mittlere klimatologische Jahresgang in insgesamt sechs Schichten ergibt. Bei der Beschreibung des mittleren Jahresganges wurde allerdings auf das vertikale Mittel bewußt verzichtet.

4.1.1. Darstellung der mittleren klimatologischen Verhältnisse über dem OWS

Eine Beschreibung des mittleren Jahresganges für jede Meßgröße und jeweils drei ausgewählte Niveaus sollen eine erste grobe Aussage über die meteorologischen Verhältnisse über dem OWS-C machen.

Der mittlere Jahresgang der Größen Temperatur und Geopotential wird in 1000-, 500- und 250 mb dargestellt. Da die Schwankungsbreite der spezifischen Feuchte sehr rasch mit der Höhe abnimmt und außerdem nur bis 400 mb gemessen wurde, werden hier die Niveaus 1000-, 850- und 500 mb betrachtet.

Für die u- und v-Komponente des Windes erscheint die Darstellung des mittleren Jahresganges in bestimmten Niveaus nicht so effektiv. Aus diesem Grund wurden für die zeitliche und vertikale Änderung der Windkomponenten Isolinien gezeichnet. Sie geben umfassendere Aufschlüsse über die
mittlere Windverteilung in der Troposphäre. Wenn man die u- und v-Komponente wieder in die Windstärke und die Windrichtung umrechnet, erhält man außerdem eine Vorstellung von der zeitlichen und vertikalen Änderung der tatsächlichen mittleren Richtung und der Stärke des Windvektors.

Da bei der Mittelwertbildung zu viele Darstellungen der klimatologischen Verhältnisse möglich sind, können nicht alle Aussagen durch Graphiken illustriert werden.

Temperatur
Der mittlere Jahresgang der Temperatur in 1000 mb (Abb. 2) zeigt eine ausgeprägte Kälteperiode von Januar bis Mitte März. Erst im April beginnt die Frühjahrserwärmung, die dann bis zum Sommer (9. Aug.) einen stetigen Anstieg aufweist.
Die Minimumtemperaturen um den 1. Januar betragen ca. 2,5°C, die höchste Temperatur im Sommer liegt bei 11,8°C.

Damit hat die Temperatur in 1000 mb eine maximale Schwankungsbreite von 9,3°C und zeigt einen für eine Seestation typisch gedämpften jahreszeitlichen Temperaturverlauf.

Die maximale Schwankungsbreite der Station Berlin Tempelhof, die etwa auf dem gleichen Breitenkreis liegt (52°28'N) beträgt zum Vergleich 19,9°C.

Die mittlere Tropopausenhöhe liegt in der kalten Periode (Jan.–März) bei etwa 260 mb und steigt mit der Temperatur im Monat August auf etwa 200 mb an.

Der Temperaturverlauf der darüberliegenden Niveaus (Abb. 3+4) ist mit dem mittleren Jahresgang in 1000 mb
Abb. 2 MITTLERER JAHRESGANG TEMPERATUR IN $1/10^oK$, 1000 MB
Abb. 3 MITTLERER JAHRESGANG TEMPERATUR IN $1/10^\circ K$, 500 MB
Abb. 4 MİTTLERER JAHRESGANG TEMPERATUR IN 1/10°K, 250 MB
stark gekoppelt. Allerdings mit dem Unterschied, daß die jährliche maximale Temperaturschwankung in 500 mb, verursacht durch Schwankungen in der Lage der Polarfront, natürlich am größten ist. Sie beträgt in diesem Niveau 12,1°C.

Der mittlere Temperaturverlauf in 250 mb ist wesentlich ruhiger und ausgeglichener als in den darunterliegenden Niveaus. Die maximale jährliche Schwankungsbreite beträgt hier nur 6,0°C. Von Januar bis April liegt die Temperatur konstant bei -54,2°C. Erst dann beginnt ein langsamer Anstieg, der etwa am 13. August mit -48,2°C sein Maximum erreicht.

Geopotential

Durch die Kopplung der Temperatur mit dem Geopotential über die Dichte in der Hydrostatischen Grundgleichung

$$\phi = -\frac{1}{\rho} \partial \rho$$

zeigt der mittlere Gang der Höhe der 1000 mb-Fläche einen ähnlichen Verlauf wie der der Temperatur.

Bis Mitte März liegt die 1000 mb-Fläche (Abb. 5) relativ tief zwischen 40- und 50 gpm. Ihre höchste Lage erreicht sie am 9. Juli mit 120 gpm. Dies Maximum tritt damit um genau einen Monat vor dem Temperaturmaximum auf.

Die oberen Atmosphärenschichten (Abb. 6+7) reagieren relativ heftig auf die Auslenkung der 1000 mb-Fläche. Die beschriebenen Maxima und Minima treten zum gleichen Zeitpunkt auch in 500- und 250 mb auf. Ein Unterschied besteht aber darin, daß die jährlichen Schwankungen nach oben hin immer größer werden (1000 mb-80 gpm,
Abb. 5 MITTLERER JAHRESGANG GEOPOTENTIAL IN GPM, 1300 MB
Abb.6 MITTLERER JAHRESGANG GEOPOTENTIAL IN GPM, 500 MB
Abb. 7 MITTLERER JAHRESGANG GEOPOTENTIAL IN GPM, 250 MB
500 mb - 320 gpm, 250 mb - 520 gpm), da die Änderung des Geopotentials in der hydrostatischen Grundgleichung der Dichteänderung umgekehrt proportional ist.

Spezifische Feuchte

Für die Darstellung der Luftfeuchtigkeit wurde der mittlere Jahresgang der spezifischen Feuchte ausgewählt, da diese Größe sich bei Vertikalbewegung der Luft nicht ändert, solange keine Kondensation eintritt.

Formelmäßig wird die spezifische Feuchte annähernd durch folgenden Ausdruck beschrieben

\[q \sim 0,622 \frac{e}{p} \]

Darin sind \(e \) der Partialdruck des Wasserdampfes oder kurz der Dampfdruck und \(p \) der Luftdruck. Der Wasserdampfgehalt der Luft ist von der Temperatur abhängig. Die spezifische Feuchte nimmt daher umso größere Werte an, je höher die herrschende Lufttemperatur ist. Dieser Zusammenhang zeigt sich auch im mittleren geglätteten Jahresgang der spezifischen Feuchte in den Niveaus 1000-, 850- und 500 mb (Abb. 8, 9, 10). Die Feuchte nimmt jedoch mit der Höhe rapider ab. In 500 mb betragen die Werte der spezifischen Feuchte gerade noch 10 % der Bodenwerte.

Die Feuchte folgt in ihrem jährlichen Gang genau dem Temperaturverlauf. Das Feuchtemaximum liegt mit 7,4 g Wasserdampf/kg feuchte Luft ebenso am 9. August und das Minimum mit 3,4 g/kg um den 1. Januar herum. Die jährliche Schwankung der spezifischen Feuchte beträgt damit 4,0 g/kg.

In 850 mb betragen die maximalen Werte im August 5,2 g/kg, und das Minimum liegt wieder im Januar mit 2,5 g/kg, wo durch die Feuchte nur noch um 2,7 g/kg schwankt.

Analog zu den höheren Temperaturen in der 2. Jahreshälfte treten in diesem Zeitraum natürlich auch die höheren
Abb. 8 MITTLERER JAHRESGANG SPEZIFISCHE FEUCHTE IN G/KG, 1000 MB
Abb. 9 MITTLERER JAHRESGANG SPEZIFISCHE FEUCHTE IN G/KG, 850 MB
Abb. 10 MITTLERER JAHRESGANG SPEZIFISCHE FELCHTE IN G/KG, 500 MB
Feuchtewerte auf.

Wind

Abb. 11 u. 12 zeigen die zeitliche Änderung der Windkomponenten in den Niveaus 1000- bis 100 mb.

Im Januar nimmt die u-Komponente in 300- bis 200 mb (im Jet-Niveau) mit 20 m/s ihre größten Werte an. Bis Mitte März schwächt sich dann der zonale Windanteil in allen Niveaus sehr stark ab. Anfang April erreicht die u-Komponente erstmalig wieder größere Werte, hauptsächlich in 300- bis 200 mb.

Die Zeit um den 15. Mai ist in allen Schichten noch einmal durch geringere Werte der u-Komponente gekennzeichnet, bevor der Zonalwind dann bis zum Monat Dezember stetig ansteigt.

Die maximalen Werte erreicht die u-Komponente Anfang August bis Anfang September zwischen 200- und 250 mb, um den 15. Oktober herum in 300 mb und Mitte Dezember in 250 mb.

Mitte September beginnt die v-Komponente an Stärke allmählich wieder zuzunehmen, obwohl der Monat November noch einmal durch kleine Werte der v-Komponente gekennzeichnet ist. Die größten Werte nimmt die v-Komponente nur in den Wintermonaten an.
Abb. 11 mittlerer Jahresgang der u-Komponente von 1000-bis 100 mb in -
Abb. 12: mittlerer Jahresgang der v-Komponente von 1000- bis 100 mb in m/sec

Anhand der vorliegenden Verhältnisse ist man geneigt, die Strömungsverhältnisse über dem OWS-C- in zwei jahreszeitliche Formen zu unterteilen:

2. die sommerliche Zirkulationsform, die von Mitte April bis September andauert. Hier treten schwächere Windgeschwindigkeiten auf und Winde aus fast westlichen Richtungen, besonders in der oberen Atmosphäre.

Durch die Mittelwertbildung erhält man schon eine erste Aussage über die mittleren klimatologischen Verhältnisse über dem OWS-C-. Bevor die natürlichen Orthogonalfunktionen, die eine bessere und genauere Darstellung der Wetterverhältnisse geben, endgültig berechnet werden können, muß man sich noch einige Gedanken hinsichtlich des Einflusses der verschiedenen Meßgrößen machen, damit man sie später miteinander vergleichen kann.
Abb. 13
mittlerer Jahresgang der Richtung des Windvektors von 4000- bis 400 mb in Grad
Abbildung 14: mittlerer Jahresgang des Betrages des Windvektors von 1000- bis 100 mb in m/sec
4.2. Wichtung der verschiedenen Meßgrößen

Die folgenden Überlegungen dienen dazu, bei der Berechnung der natürlichen Orthogonalfunktionen Gewichte anzuzeigen, die einen Vergleich von Geopotential, Temperatur, Feuchte und Wind ermöglichen.

Dieser Vergleich erfolgt in der Kovarianzmatrix, in die die oben angegebenen Größen quadratisch eingehen.

Normalerweise erfolgen Kopplungen dieser verschiedenen Größen über Energiewerte. Deshalb werden sinnvolle Ausdrücke gesucht, in denen die Quadrate der angegebenen Größen einen Energiewert darstellen.

Für die \(u \)- und \(v \)-Komponente des Windes läßt sich der gewünschte Zusammenhang einfach durch die kinetische Energie bezogen auf die Masseneinheit ausdrücken.

\[
E_{\text{kin}} = \frac{1}{2} v^2 \quad (4.2.1)
\]

\[
E_{\text{kin}} = \frac{1}{2} u^2 \quad (4.2.2)
\]

Etwas schwieriger ist die Herleitung entsprechender Ausdrücke für die anderen Größen, da auch sie in quadratischer Form auftreten müssen, wenn der Wind nicht zu kleine Werte annehmen soll. Die gewünschte Kopplung gibt der von LORENZ u.a. abgeleitete analytische Ausdruck für die verfügbare potentielle Energie. Die Theorie geht davon aus, daß die Atmosphäre versucht, durch Massenumlagerungen einen Gleichgewichtszustand zu erreichen. Die dabei auftretende Differenz

\[
(P+I) - (P+I)_e = A
\]

\(P+I = \text{Summe von potentieller und innerer Energie} = \text{totale potentielle Energie} \)

\(A = \text{verfügbare potentielle Energie} \)

(e bedeutet equilibrium) stellt nicht den Anteil der
totalen potentiellen Energie dar, sondern wird als verfügbar zur Umwandlung in kinetische Energie angesehen.

Der Gleichgewichtszustand wird durch über ein Gebiet F gemittelte Größen beschrieben. Der entscheidende Schritt besteht an dieser Stelle darin, daß für die verfügbare potentielle Energie die Abweichung vom Flächenmittel gebildet wird, während bei dieser Untersuchung nur Meßwerte an einem einzigen Punkt zur Verfügung stehen und somit also nur Abweichungen vom mittleren Zustand an diesem einzigen Punkt berechnet werden können.

Wie oben erläutert, interessiert aber auch nur die dabei getroffene Wichtung der Meßgrößen, nicht die physikalische Aussage. Später kann gezeigt werden, daß durch diese beschriebene Verfahren eine gute Auflösung der einzelnen natürlichen Orthogonalfunktionen erreicht wird.

Eine Ableitung des analytischen Ausdrucks der verfügbaren potentiellen Energie geben E.N. LORENZ (1955), B. HAURWITZ (1941) S. 247, H. KOSCHMIEDER (1941) S. 335 und P. SPETH S. 7:

Die Innere- und Potentielle Energie pro Flächeneinheit
beträgt:
\[I = \frac{c_0}{g} \int_{p_2}^{p_1} T \, dp \] \hspace{1cm} (4.2.3)

und
\[p = \int_{p_2}^{p_1} z \, dp \] \hspace{1cm} (4.2.4)

Integriert man den Ausdruck (4.2.4) partiell, so erhält man:
\[p = \frac{R}{g} \int_{p_2}^{p_1} T \, dp + \{p_1 z_1 - p_2 z_2\} \] \hspace{1cm} (4.2.5)

aus (4.2.5) und (4.2.3) folgt:
\[\frac{p}{I} = \frac{R}{c_0} + \frac{p_1 z_1 - p_2 z_2}{I} \] \hspace{1cm} (4.2.6)

Damit ergibt sich für die totale potentielle Energie:
\[p + I = \frac{c_p}{g} \int_{p_2}^{p_1} T \, dp + \{p_1 z_1 - p_2 z_2\} \] \hspace{1cm} (4.2.7)

Wenn man die potentielle Temperatur \(\theta = T \left(\frac{P_0}{P} \right)^{1+\chi} \) einsetzt und partiell integriert, so folgt:
\[p + I = c \int_{\theta_1}^{\theta_2} p^{1+\chi} \, d\theta + c \{\theta_1 p_1^{1+\chi} - \theta_2 p_2^{1+\chi}\} + \{p_1 z_1 - p_2 z_2\} \] \hspace{1cm} (4.2.8)

mit \(c = \frac{c_p}{g P_0^{1+\chi}(1+\chi)} \).

Der geforderte Gleichgewichtszustand kann durch über ein Gebiet \(F \) gemittelte Größen beschrieben werden.

Die totale potentielle Energie des Gleichgewichtszustandes erhält man, wenn man in (4.2.8) \(p \) durch \(\bar{p}^F \) und \(z \)
drch \(\bar{z}^F \) ersetzt.

Zehnt man jetzt diese veränderte Gleichung von der
ursprünglichen ab und führt dann eine Flächenmitteilung
drhch, so erhält man einen Ausdruck für die verfügbare
potentielle Energie, die mit \(\bar{A}^F \) bezeichnet wird:

\[
\bar{A}^F = c \int_{\theta_1}^{\theta_2} \left(p^{1+\chi} - p^{1+\chi} \right) d\theta + \bar{z}^F
\quad (4.2.9)
\]

\(\bar{z}^F \): restliche Glieder.

Zrlegt man den Druck in sein Flächenmittel und in die
dzugehörige Abweichung, also \(p = \bar{p}^F + p'' \), und führt
dann eine Reihemenentwicklung durch, so kann man unter
Vrnachlässigung von Gliedern mit größerer als quadra-
tischer Ordnung \((4.2.9) \) umschreiben in:

\[
\bar{A}^F = \frac{c_1}{2} \int_{\theta_1}^{\theta_2} \frac{1}{\bar{p}^F} \left(x^{-1} \bar{z}^F \right) d\theta + \bar{z}^F
\quad (4.2.10)
\]

mit \(c_1 = \frac{x}{g} \frac{C_p}{P_0^X} \).

Dückt man in dieser Gleichung die potentielle Temperatur
mit Hilfe der Poisson-Gleichung

\[
\theta = T \left(\frac{P_0}{P} \right)^X \text{ durch } d\theta = (1-X) \frac{\theta}{P} dp
\]

as, so bekommt man nach einigen Umformungen:

\[
\bar{A}^F = \frac{c_1}{2} \int_{P_1}^{P_2} \left(-\frac{\delta}{\delta P} \right)^{-1} \left(\frac{\delta}{\delta \theta} \right) \bar{z}^F \bar{p}^F \bar{p}^F \left(-\frac{\delta}{\delta P} \right) \bar{z}^F \bar{p}^F + \bar{z}^F
\quad (4.2.11)
\]

D. \(\frac{\delta}{\delta P} = \frac{\delta}{\delta T} \) und für Flächen gleichen Drucks \(p = \bar{p}^F \), also
\(\bar{z}^P = 0 \) ist, kann man \((4.2.11) \) umformen in
\[A^F = \frac{1}{2g} \int_{\gamma}^{\frac{P_1}{P_2}} \gamma \frac{T^2}{\rho} \, dp \] (4.2.12)

mit \(\gamma = \frac{R}{P} \frac{\delta}{T} \left(-\frac{\delta F}{\delta P} \right)^{-1} \) (4.2.13)

Stabilitätsfaktor.

Gleichung (4.2.12) stellt also die über die Fläche \(F \) gemittelte verfügbare potentielle Energie dar.

Bezogen auf die Masseneinheit folgt daraus:

\[A^F = \frac{\gamma}{2} \frac{T^2}{\rho} \] (4.2.14)

Die verfügbare potentielle Energie setzt sich zusammen aus Energiegewinn bei Temperaturerhöhung und Energiegewinn bei Hebung des Massenschwerpunktes, d.h. aus Änderung der inneren Energie oder Änderung der potentiellen Energie.

Innere und potentielle Energie stehen in einem bestimmten Verhältnis zueinander:

\[I = \int_{P_2}^{P_1} (c_\alpha T) \rho \, dz \] (4.2.15)

\[P = \int_{P_2}^{P_1} (RT) \rho \, dz \] (4.2.16)

\[\frac{P}{I} = \frac{R}{c_\alpha} = \frac{c_p}{c_v} \quad P \approx \frac{2}{5} I \] (4.2.17)

Das heißt also, die verfügbare potentielle Energie bei Berücksichtigung nur der inneren Energie betrigt:

\[(A^F)_I = \frac{5}{7} \frac{\gamma}{2} \frac{T^2}{\rho} \] (4.2.18)

Analog zur kinetischen Energie hätte man jetzt einen Ausdruck, in den die Messgröße - in diesem Fall die Temperatur -
quadratisch eingeht.

Als nächstes wird ein ähnlicher Ausdruck für das Geopotential abgeleitet. Ausgangspunkt soll die Gleichung (4.2.10) sein. Ersetzt man die Größe p''^2 unter Verwendung der statischen Grundgleichung und der Gasgleichung durch das Geopotential, so folgt

$$\tilde{A}^F = \frac{c_1}{2} \int \frac{p}{p^2 - p_1^2} \frac{p^2}{R^2} \phi''^2 d\theta$$ \hspace{1cm} (4.2.1)

Drückt man die potentielle Temperatur wieder mit Hilfe der Poisson-Formel durch $d\theta = (1-\chi) \frac{\theta}{P} dp$ aus, so kann man schreiben:

$$\tilde{A}^F = \frac{c_1}{2} \int \frac{p^2}{p_1^2} \frac{p^2}{p^2 - p_1^2} \phi''^2 \frac{\theta}{p} dp$$ \hspace{1cm} (4.2.2a)

Nach einigen Umformungen erhält man für die verfügbare potentielle Energie bezogen auf die Masseneinheit:

$$\tilde{A}^F = \frac{(1-\chi)^2}{R^2} \gamma \phi''^2$$ \hspace{1cm} (4.2.21)

Die verfügbare potentielle Energie bei Berücksichtigung nur der potentiellen Energie beträgt damit

$$(\tilde{A}^F)_P = \frac{2}{7} \frac{(1-\chi)^2}{R^2} \gamma \phi''^2$$ \hspace{1cm} (4.2.22)

Auch hier geht die Maßgröße - Geopotential - quadratisch ein. Ein analoger Ausdruck muß jetzt nur noch für die spezifische Feuchte hergeleitet werden.

Der 1. Hauptsatz der Wärmelehre gibt eine Kopplung zwischen Temperatur und spezifischer Feuchte:

$$- L dq = (c_a + R) dT - a dp$$ \hspace{1cm} (4.2.23)
daraus folgt durch Umformung

\[c_p \, dT = L \, dq + \alpha \, dp \]

oder \[c_p \, dT = L \, dq + R \, dT - p \, d\alpha \] (4.2.24)

Da in die Berechnung nicht die Meßwerte der Größen \(-T-\)
und \(-q-\) eingehen, sondern die Abweichungen vom Mittelwert,
kann man schreiben:

\[\bar{T}^F = \frac{L \cdot q^F}{c_p} \] (4.2.25)

Setzt man (4.2.25) in (4.2.14) ein, so folgt

\[\bar{A}^F = \frac{\gamma}{2} \frac{L^2 \cdot \alpha^2 F}{c_p} \] (4.2.26)

Die Meßgröße geht wieder in quadratischer Form ein. Ein
konstanter Faktor ist hier schwierig zu bestimmen, aber es
fällt wahrscheinlich auch nicht zu stark ins Gewicht, wenn
man ihn gleich eins setzt. Für den Stabilitätsfaktor \(\gamma\)
werden in allen Ausdrücken die von SPETH für jedes Niveau be-
rechneten Werte eingesetzt (s. Tab. 1).

Hierbei handelt es sich um die vertikale Änderung des zeit-
lieh gemittelten Stabilitätsfaktors, und zwar um ein Flä-
chenmittel für das Gebiet 60°W - 30°E, 40°-75°N. In diesem
Gebiet befand sich auch das OWS-C-.

Auf die oben beschriebene Weise hat man jetzt also in den
Formeln (4.2.18), (4.2.22) und (4.2.26) Ausdrücke zur Ver-
fügung, in denen die Quadrate der angegebenen Größen
eine Energie darstellen. Damit hat man die Möglichkeit,
die Energieanteile der verschiedenen Meßgrößen mitein-
ander zu vergleichen. Als Dimension ergibt sich die Ein-
heit Joule pro Gramm - also Energie bezogen auf die
Masseneinheit.
Tabelle 1 Vertikale Änderung des Stabilitätsfaktors

<table>
<thead>
<tr>
<th>Niveau [mb]</th>
<th>Stabilitätsfaktor $\gamma \left[10^4 \text{ cm}^2 \text{ sec}^{-2} \text{ Grad}^{-2} \right]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>6,8</td>
</tr>
<tr>
<td>950</td>
<td>6,9</td>
</tr>
<tr>
<td>900</td>
<td>7,0</td>
</tr>
<tr>
<td>850</td>
<td>7,1</td>
</tr>
<tr>
<td>800</td>
<td>7,3</td>
</tr>
<tr>
<td>750</td>
<td>7,5</td>
</tr>
<tr>
<td>700</td>
<td>7,7</td>
</tr>
<tr>
<td>650</td>
<td>8,6</td>
</tr>
<tr>
<td>600</td>
<td>9,8</td>
</tr>
<tr>
<td>550</td>
<td>11,0</td>
</tr>
<tr>
<td>500</td>
<td>12,0</td>
</tr>
<tr>
<td>450</td>
<td>13,6</td>
</tr>
<tr>
<td>400</td>
<td>13,0</td>
</tr>
<tr>
<td>350</td>
<td>11,0</td>
</tr>
<tr>
<td>300</td>
<td>8,6</td>
</tr>
<tr>
<td>250</td>
<td>6,0</td>
</tr>
<tr>
<td>200</td>
<td>5,4</td>
</tr>
<tr>
<td>150</td>
<td>5,2</td>
</tr>
<tr>
<td>100</td>
<td>5,1</td>
</tr>
</tbody>
</table>

5. BERECHNUNG DER VERTIKALEN NATÜRLICHEN ORTHOGONAL-FUNKTIONEN

Zur Berechnung der natürlichen Orthogonalfunktionen werden, wie oben beschrieben, in einem ersten Rechengefäß für jede Messgröße und jedes Niveau die terminlichen Abweichungen vom geglätteten mittleren Jahresgang berechnet.

Diese Abweichungen werden in der Folge mit Hilfe der Wurzel aus den Formeln (4.2.1), (4.2.2), (4.2.18), (4.2.22) und (4.2.26) so gewichtet, daß man sie über die Energie miteinander vergleichen kann. Die Wurzel
wird deshalb gezogen, weil die Meßgrößen in der Matrix erneut miteinander multipliziert werden. Würde man direkt mit den Quadraten eingehen, so erhielte man die vierte Potenz einer Energiegröße. Geht man mit der Dimension einer Geschwindigkeit in die Berechnung ein, so erhält man durch die Multiplikation der Matrixelemente wieder die Dimension einer Energie.

Die gewichteten Abweichungen der Meßgrößen vom geglätteten mittleren Jahresgang lassen sich nun an jedem Termin zu einem sogenannten Datenvektor zusammenfassen. Die Komponenten des Datenvektors werden von je 19 Geopotential- und Temperaturwerten, 13 Feuchtewerten und je 6 Werten für die mittlere Windkomponente in 6 Schichten gebildet — alle auf die gleiche Dimension transformiert.

5.1. Bildung der verschiedenen Kovarianzmatrizen

Um die zu den natürlichen Orthogonalfunktionen führende Kovarianzmatrix zu gewinnen, werden in einem weiteren Rechengang aus den sogenannten Datenvektoren jedes Terms, also für jeden durchgeführten Radiosondenaufstieg, terminliche Matrizen gebildet. Die Einzelmatrizen werden gewonnen, indem jede Vektorkomponente mit sich selbst und jeder anderen multipliziert wird.

Man erhält somit eine Matrix, die aus 63 mal 63 Elementen des Datenvektors gebildet wird und daher insgesamt 3969 Produkte enthält. In der Diagonale stehen die Quadrate der Abweichungen vom geglätteten mittleren Jahresgang.

Zur weiteren Berechnung werden die Einzelmatrizen des jeweiligen Untersuchungszeitraums aufsummiert und gemittelt.

Da es Ziel dieser Arbeit ist, die Veränderlichkeit der Orthogonalfunktionen in Abhängigkeit von der Jahreszeit zu untersuchen, werden anhand des mittleren Jahresganges der Temperatur (Abb. 2) vier verschiedene Zeiträume aus-
gesucht, für die nach dem oben beschriebenen Verfahren je eine Kovarianzmatrix aufgestellt wird.

Für jede Kovarianzmatrix werden dann die Eigenfunktionen berechnet. Die vier verschiedenen Jahreszeiten wurden folgendermaßen gewählt:
1. Vierteljahr - das "Kälteplateau" der Monate Januar, Februar, März
2. Vierteljahr - beginnende Erwärmung in den Monaten April bis Juni
3. Vierteljahr - Temperaturspitzen in den Monaten Juli bis September

Diese Einteilung ist also etwa analog zu den Jahreszeiten Winter, Frühling, Sommer und Herbst.

Um die jahreszeitliche Veränderlichkeit der natürlichen Orthogonalfunktionen besser beschreiben zu können, wird ebenfalls eine Kovarianzmatrix für das gesamte Jahr erstellt. Außerdem umgeht man hierdurch die Gefahr, daß bei der späteren Berechnung der zeitabhängigen Koeffizienten der natürlichen Orthogonalfunktionen Unstetigkeiten an den vierteljährlichen Übergängen auftreten. Die Kovarianzmatrix des gesamten Jahres wird dadurch gewonnen, daß man die vier jahreszeitlichen Kovarianzmatrizen aufsummiert und wieder mittelt.

Ein Vergleich soll zeigen, inwiefern dies Einfluß auf die Berechnung der natürlichen Orthogonalfunktionen hat.
5.2. Das Jacobische Iterationsverfahren

Aus den ermittelten Kovarianzmatrizen für jedes Vierteljahr und für das gesamte Jahr lassen sich iterativ nach dem Jacobischen Verfahren die Eigenfunktionen und Eigenwerte erstellen. Bei der Bestimmung der Eigenwerte der Matrix A handelt es sich um die Lösung der Gleichung

\[
\text{Det} (A - \lambda^2 E) = 0 \tag{5.2.1}
\]

(E: Einheitsmatrix = Produkt der Matrix A mit ihrer Inversen)

\[
S^T AS = D \tag{5.2.2}
\]

wobei \(S^T\) die Transponierte von S bedeutet.

Die Orthogonaltransformation wird so gewählt, daß zwei symmetrische Glieder außerhalb der Hauptdiagonalen zu Null werden. Dabei können zwar Elemente, die vorher Null
waren, ungleich Null werden, doch bleibt die Summe der Elemente außerhalb der Hauptdiagonale der transformierten Matrix stets kleiner als die der nichttransformierten Matrix. Dies Verfahren wird so lange angewandt, bis die Summe der außerhalb der Hauptdiagonale stehenden Elemente eine vorgegebene Grenze unterschreitet.

Man kann beweisen, daß dies Verfahren konvergiert (s. SPERNER S. 127 ff). Das Jacobi-Verfahren liefert somit sämtliche Eigenwerte und Eigenfunktionen der symmetrischen Kovarianzmatrix A.

6. Diskussion der natürlichen Orthogonalfunktionen für das gesamte Jahr

Im Gegensatz zur Berechnung der natürlichen Orthogonalfunktionen soll bei der Diskussion mit den Funktionen für das gesamte Jahr begonnen werden. Später folgt dann am Beispiel einer bestimmten Orthogonalfunktion die Beschreibung der Abweichung im jahreszeitlichen Verlauf.

6.1. Fehlerbetrachtung

Wie oben beschrieben, liefert die Eigenwertgleichung der Kovarianzmatrix mit Hilfe eines EDV-Programms nach der Jacobischen Iterationsmethode 63 Orthogonalfunktionen, die nach der Größe ihrer Eigenwerte geordnet sind.

Abb. 16 mittl. quadratischer Fehler
Abb. 15 Eigenwerte der Kovarianzmatrix
als ziemlich gering angesehen werden. Aus diesem Grund dürfte es genügen, wenn man nur die ersten fünf Orthogonalfunktionen betrachtet und die restlichen Reihenglieder vernachlässigt.

Außerdem werden bei höheren Ordnungen die Schwankungsbreiten zu gering, als daß sie eine vernünftige und fundierte Interpretation ermöglichen könnten.

Berechnet man zusätzlich den nach Formel (3.4) definierten mittleren quadratischen Fehler, so läßt sich der prozentuale Restfehler der n-ten Ordnung im Verhältnis zur Gesamtabweichung zwischen Meßwert und Mittelwert (c-te Ordnung) darstellen (Abb. 16). Bei der Betrachtung der ersten fünf Orthogonalfunktionen begeht man einen Fehler von ca. 16 %, wenn man die restlichen 58 Ordnungen vernachlässigt.

Die Varianzwerte unterstreichen aber die überragende Bedeutung der ersten fünf Funktionen, und man kann annehmen, daß sie die wesentliche meteorologische Information enthalten.

6.2. 1. Orthogonalfunktion

Da in dieser Darstellungsform die Meßgrößen aus Vergleichsgründen (s. Kap. 4.2) gewichtet auftreten, ist es nicht möglich, unmittelbar die tatsächliche Schwankungsbreite in den ursprünglichen Einheiten abzulesen. Abb. 17b zeigt deshalb die ungewichtete vertikale Ände-
Abb. 17a 1. Orth. Funktion gesamtes Jahr
Abb. 17b 1. Orth. Funktion gesamtes Jahr
rung der Meßgrößen in den ursprünglichen Einheiten Grad Kelvin, geopotentielle Meter, Gramm Wasserdampf pro Kilogramm feuchte Luft und Meter pro Sekunde. Hiermit läßt sich die tatsächliche mittlere quadratische Abweichung vom berechneten Mittelwert ablesen. Um dennoch eine analoge Darstellung zu gewinnen, wurden die einzelnen Kurven so gegeneinander verschoben, daß ihr Verhältnis in 500 mb dem der Energiedarstellung entspricht.

Wie bereits erläutert, beschreiben die natürlichen Orthogonalfunctionen die vertikalen Korrelationen, aber auch die Korrelationen zwischen den fünf verschiedenen physikalischen Meßwerten. Über das Vorzeichen wird keine Aussage gemacht, nur die Korrelationen werden bestimmt.

Ist z.B. Kaltluft mit geringer Feuchte korreliert (mittlere quadratische Abweichung vom Mittelwert jeweils negativ), so ergibt sich automatisch der analoge Fall, daß Temperaturanstieg mit Feuchtezunahme korreliert sein muß. Das Vorzeichen ist also nicht festgelegt.

Relativ groß ist ebenfalls der Einfluß der Feuchte, jedoch treten die größten Schwankungen mit ca. −0,7 g/kg nur in den unteren Niveaus auf, darüber nimmt der Einfluß der Feuchte rapide ab. Die latente Wärme zeigt somit ebenfalls eine noch relativ große Kopplung mit den Energiegrößen der sensiblen Wärme und des Geopotentials. Temperaturabnahme ist also mit Feuchterückgang verbunden und analog Temperaturerhöhung mit Feuchteanstieg.

6.3. 2. und 3. Orthogonalfunktion

Bei der 3. Orthogonalfunktion tritt die u-Komponente energetisch am bedeutendsten in Aussicht. Durch die gesamte Atmosphäre hindurch ist die Abnahme der u-Komponente mit einer gleichzeitigen Abschwächung der v-Komponente korreliert. Die größten Schwankungen treten mit - 13 m/s bei der u-Komponente und - 9,4 m/s
Abb. 18a 2. Orth. Funktion gesamtes Jahr
Abb. 18b 2. Orth. Funktion gesamtes Jahr
Abb. 19b 3. Orth. Funktion gesamtes Jahr

sensible Energie : ————
potentielle Energie : ————
latente Energie : ————
kinet. Energie : | (u-Komp.), | (v-Komp.)
bei der v-Komponente wieder in der oberen Troposphäre auf. Dieser Korrelation der Windkomponenten würde ein mittlerer Wind aus ca. 300° entsprechen, allerdings mit sehr geringen Windgeschwindigkeiten um etwa 2 m/s.

Bei den analogen Verhältnissen mit entgegengesetzten Vorzeichen würden starke Winde aus dem Raum um Neufundland (ca. 245°) eine Abkühlung hervorrufen, wobei diesmal aber die Feuchte zunehmen würde. Die 2. und 3. Orthogonalfunktionen klassifizieren damit in roher Weise die Richtung der Höhenströmung.

8.4. 4. Orthogonalfunktion

Bei der 4. Orthogonalfunktion (Abb. 2o) sind durch die ganze Atmosphäre hindurch sensible Wärme und Geopotential miteinander negativ korreliert, d.h. also, daß eine Temperaturabnahme mit Anstieg der Höhe der Druckflächen einhergeht oder ganz allgemein mit Druckanstieg. Die größten Schwankungen zeigt die Temperatur in 900 mb mit −0,95 K und in 250 mb mit −1,3 K. Außerdem zeigen latente- und sensible Wärme einen fast parallelen Verlauf. Temperaturabnahme entspricht also ebenfalls einem Feuchterückgang und Temperaturzunahme einem Anstieg der Feuchtigkeit. Die größte Schwankungsbreite tritt für die Feuchte in 850 mb mit −0,64 g/kg auf.

Obwohl die v-Komponente in der mittleren Atmosphäre wieder den energetisch größten Anteil liefert, ist die Kopplung mit den anderen Maßgrößen nicht eindeutig. Auch die Untersuchung ausgewählter Wetterlagen bringt keine genauen
Abb. 20a 4. Orth. Funktion - gesamtes Jahr
sensible Energie :
potentielle Energie :
latente Energie :
kinet. Energie : | (u-Komp.), | (v-Komp.)

Abb. 20b 4. Orth. Funktion gesamtes Jahr
Aufschlüsse. Wie später aber gezeigt werden kann, beschreibt die 4. Orthogonalfunktion vorwiegend Druckänderungen, verbunden mit wandernden Zyklonen und ihren Fronten. Es lassen sich somit auch schon kleinerskalige Vorgänge erfassen.

6.5. 5. Orthogonalfunktion und höhere Ordnungen

Die kinetische Energie hat nur noch einen äußerst geringen Einfluß. Die Schwankungen der Windkomponenten liegen unter 1,5 m/s. Die 5. Orthogonalfunktion macht somit eine Aussage über die Steilheit des vertikalen Temperaturgradienten, besonders in der unteren Atmosphäre und den damit verbundenen Stabilitätsgrad der Schichtung über dem OWS-C-.

Die 6. (Abb. 22) und alle weiteren Orthogonalfunktionen zeigen nur noch geringe Schwankungen, so daß eine gute meteorologische Interpretation nicht mehr ganz einfach ist.

Die höheren Ordnungen bringen nur noch geringe Verbesse-
Abb. 21a 5. Orth. Funktion gesamtes Jahr

sensible Energie
potentielle Energie
latente Energie
kinet. Energie: \((u\text{-Komp.})\), \((v\text{-Komp.})\)
sensible Energie : ---
potentielle Energie : ---
latente Energie : ---
Kinet. Energie : | (u-Komp.), | (v-Komp.)

Abb. 21b 5. Orth. Funktion gesamtes Jahr
Abb. 22 6. Orth. Funktion gesamtes Jahr
rungen für die Approximation der Radiosondenaufstiege. Außerdem hat die vorangegangene Fehlerbetrachtung gezeigt, daß der Fehler nicht zu groß wird, wenn man die Reihe nach fünf Orthogonalfunktionen abbricht.

Die Diskussion der natürlichen Orthogonalfunktionen für das gesamte Jahr hat gezeigt, daß durch die in Kapitel 4.2 beschriebene Wichtung eine gute Auflösung der einzelnen Meßgrößen erreicht wird. Man hat so die Möglichkeit, die Korrelationen zwischen allen Meßgrößen zu beschreiben und sinnvoll zu interpretieren.

7. DARSTELLUNG UND DISKUSSION DER ÄNDERUNG DER 1. ORTHOGONALFUNKTION IN VIER UNTERSCHIEDLICHEN JAHRESZEITEN

Um eine Vorstellung von der Änderung der natürlichen Orthogonalfunktionen in den oben definierten Jahreszeiten zu vermitteln, soll als Beispiel die 1. Orthogonalfunktion in den vierteljährlichen Abschnitten diskutiert werden.

Es soll dabei untersucht werden, inwieweit die Auswahl der einzelnen Monate Einfluß auf die Berechnung der natürlichen Orthogonalfunktionen hat.

Zum Vergleich der jahreszeitlichen Schwankung der 1. Orthogonalfunktion werden die Darstellungen der vertikalen Änderung der Meßgrößen in ihren ursprünglichen Einheiten herangezogen. Sie liefern die wesentlichen Informationen, die die Unterschiede beschreiben.
Als erstes wichtiges Ergebnis kann man den Abb. 23 bis 26 entnehmen, daß die in Kapitel 5 beschriebenen Korrelationen zwischen den Meßwerten im jahreszeitlichen Verlauf, abgesehen von den Windkomponenten, in etwa erhalten bleiben. Diese Aussage läßt sich auch auf höhere Ordnungen übertragen, solange die Schwankungen nicht zu klein werden. Natürlich ist ein vollständiges Umschlagen des Vorzeichens möglich, aber wie oben bereits erwähnt wurde, ist das Vorzeichen nicht festgelegt. Es werden nur die Korrelationen zwischen den Meßwerten beschrieben.

Temperaturänderung

Die Erwärmung in den beiden folgenden Vierteljahren zeichnet sich dadurch aus, daß die Temperaturschwankungen in 1000 mb von 0 auf -1,7K zunehmen. Außerdem werden die

In der darüberliegenden unteren Stratosphäre treten die größten Temperaturschwankungen in etwa 200 mb auf. Im Winter betragen die Schwankungen + 5,1K und steigen dann im 2. Vierteljahr auf + 5,5K an. In der Sommerperiode, in der auch die mittlere Troposphäre die kleinsten Temperaturschwankungen zeigt, verschiebt sich die maximale Schwankung etwas nach oben und sinkt außerdem auf + 3,8K. Im 4. Vierteljahr steigen die Schwankungen der Temperatur wieder auf + 4,4K an.

Geopotentialänderungen

Xähnlich wie bei der 1. Orthogonalfunktion für das ganze Jahr bleibt auch im unterteilten Jahresablauf Temperaturabnahme mit Druckabnahme gekoppelt oder Temperaturzunahme mit Druckanstieg. Es ändert sich lediglich die Schwankungsbreite.

Die Schwankung der geopotentiellen Höhe ist über die Hydrostatische Grundgleichung mit der Temperaturschwankung gekoppelt. Die größten Schwankungen treten also in der kältesten Jahreszeit auf, und zwar mit - 208 gpm.
Im Frühling und Sommer sinken die Schwankungen auf Grund der geringen Temperaturänderungen auf 172- und 158 gpm. Erst mit der beginnenden Abkühlung im 4. Vierteljahr steigt die Schwankungsbreite auf 204 gpm an.

Im Jahresgang ändert sich ebenso die Höhe, in der die Schwankungsmaxima auftreten. In der Sommerperiode liegt sie bei 250 mb, während sie im Übrigen Jahr bei 300 mb liegt.

Feuchteänderungen

Die Feuchteänderungen sind zwar stark von den herrschenden Temperaturverhältnissen abhängig, jedoch hat die Unterlage sicherlich einen ebenso starken Einfluß, zumal die größten Feuchteschwankungen in Bodennähe in ca. 900 mb auftreten.

Windänderung

Diese Korrelation findet man im 2. Vierteljahr nur noch
Im Frühling und Sommer sinken die Schwankungen auf Grund der geringen Temperaturänderungen auf 172- und 158 gpm. Erst mit der beginnenden Abkühlung im 4. Vierteljahr steigt die Schwankungsbreite auf 204 gpm an.

Im Jahresgang ändert sich ebenso die Höhe, in der die Schwankungsmaxima auftreten. In der Sommerperiode liegt sie bei 250 mb, während sie im übrigen Jahr bei 300 mb liegt.

Feuchteänderungen

Die Feuchteänderungen sind zwar stark von den herrschenden Temperaturverhältnissen abhängig, jedoch hat die Unterlage sicherlich einen ebenso starken Einfluß, zumal die größten Feuchteschwankungen in Bodennähe in ca. 900 mb auftreten.

Windänderung

Diese Korrelation findet man im 2. Vierteljahr nur noch

Anhand der jahreszeitlichen Änderung der 1. Orthogonalfunktion kann man jetzt abschätzen, inwiefern sich die Auswahl der Monate auf die Berechnung der natürlichen Orthogonalfunktionen auswirkt. Die vorausgegangene Diskussion hat gezeigt, daß die Auswahl der Monate, auf die man die Untersuchung stützt, abgesehen vom Wind, keine wesentliche Auswirkung auf die Berechnung hat. Für zukünftige Berechnungen wäre es gleich, welche Monate man auswählt. Am besten würden sich vielleicht die Monate mit den größten Schwankungen eignen, da die wechselfeitigen Korrelationen zwischen den einzelnen Meßwerten hier am günstigsten hervortreten.

8. EINFLUSS DER LÄNGE DES UNTERSUCHUNGSZEITRAUMS AUF DIE NATÜRLICHEN ORTHOGONALFUNKTIONEN

der Aufstiege, auf die sich die Untersuchung stützt, um ca. 93 % verringert. Es werden nur noch ca. 900 statt ca. 13000 Radiosondenaufstiege untersucht.

Anhand der ersten beiden natürlichen Orthogonalfunktio-

nen für das 1. Vierteljahr soll gezeigt werden, wie sich die starke Verringerung der Daten auswirkt. Abb. 27 bis 30 zeigen die ersten beiden Orthogonalfunktionen, einmal basierend auf dem gesamten Zeitraum, zum anderen auf den Jahren 1948-52. Bis auf die leichten energiemäßigen Ände-

rungen der Windkomponenten sind die Abbildungen fast iden-
tisch. Bei beiden Orthogonalfunktionen wird der Energiean-

teil der u-Komponente größer und der der v-Komponente kleiner, wenn man den Untersuchungszeitraum ausdehnt.

Diese Tatsache beweist, daß die Länge des Untersuchungs-

zeitraums von untergeordneter Bedeutung für die Unter-

suchungsergebnisse ist. Die natürliche Orthogonalfunktio-

nen liefern dennoch eine optimale Darstellung der aktuel-

len Radiosondenaufstiege – optimal im Sinne kleinsten Fehlerquadrate.

Die statistische Absicherung wird zwar größer, wenn man einen längeren Zeitraum betrachtet, doch treten in den Ergebnissen keine wesentlichen Änderungen auf. Schon mit den Wintermonaten von fünf Jahren könnte man die Wetter-
situationen über dem OWS-C optimal und objektiv durch natürliche Orthogonalfunktionen darstellen. Voraussetzung für dieses Ergebnis sind sicherlich gut vorbereitete Grund-
daten, d.h., daß fehlende Daten interpoliert werden und der mittlere Jahresgang durch eine Fourierreihe geglättet wird. Anwendungen könnten die natürlichen Orthogonalfunktionen in der örtlichen Wettervorhersage finden, indem mit ihrer Hilfe analoge Fälle ausgewählt werden.

Eine systematische Untersuchung der rein zeitabhängigen Koeffizienten $c_{i,t}$ auf ihre zeitliche Erhaltungsneigung kann auch direkt zu statistischen Vorhersagemethoden unter Verwendung natürlicher Orthogonalfunktionen führen.
Abb. 23 1. Orth. Funktion Jan, Feb, Mär
Abb. 24 1. Orth. Funktion Apr, Mai, Jun

sensible Energie : -
potentielle Energie : --
latente Energie : ---
kinet. Energie : || (u-Komp.), || (v-Komp.)
Abb. 25 1. Orth. Funktion Jul, Aug, Sep
Abb 26 1. Orth. Funktion Okt, Nov, Dez
Abb. 27 1. Orth. Funktion Jan, Feb, März 1948–65
Abb. 28 1. Orth. Funktion Jan, Feb, Mär 1948–52
Abb. 29 2. Orth. Funktion Jan, Feb, Mär 1948–65
Für all diese Anwendungen würden Aufstiege aus den Winter-
monaten von fünf Jahren ausreichen.

9. BERECHNUNG UND DISKUSSION DER ZEITABHÄNGIGEN KOEFFI-
ZIENTEN $c_{i,t}$ FÜR DIE ERSTEN FünF ORTHOGONALFUNKTIONEN

Als Anwendung der natürlichen Orthogonalfunktionen sollen
zum Schluß die zeitabhängigen Koeffizienten berechnet wer-
den. Anhand dieser Koeffizienten werden dann die wechseln-
den Wettersituationen über dem OWS-C für einen bestimmten
Zeitraum meteorologisch interpretiert.

Die Berechnung der zeitabhängigen Koeffizienten läßt sich
aus der Theorie der natürlichen Orthogonalfunktionen ab-
leiten. Aus der Formel

$$ f_t = \sum_{i=1}^{63} c_{i,t} \tilde{p}_i $$

erhält man unter Ausnutzung der Orthogonalbedingung

$$(\tilde{p}_i, \tilde{p}_j) = \begin{cases} 0 & \text{für } i \neq j \\ \lambda_i^2 & \text{für } i = j \end{cases}$$

für die zeitabhängigen Koeffizienten $c_{i,t}$:

$$ c_{i,t} = \frac{\tilde{f}_t \tilde{p}_i, p_{i,t}}{\lambda_i^2} $$ (9.1)

Die Summation der inneren Produkte erfolgt über alle
Niveaus und Parameter. Die Eigenfunktionen $\tilde{p}_i, p_{i,t}$ und die
Eigenwerte λ_i^2 wurden aus der Kovarianzmatrix für den
gesamten Zeitraum und das ganze Jahr berechnet, da sonst
die Gefahr bestünde, an den vierteljährlichen Übergängen
Unstetigkeiten in den Koeffizienten zu erhalten. Die
Maßwerte $f_{p,t}$ sind bekannt.

Die Normierung der $c_{i,t}$ auf eins ist so gewählt, daß die
$c_{i,t}$ dimensionslos bleiben. Die Eigenfunktionen haben
dann die gleiche Dimension wie die Datenvektoren f_t.

Damit erhält man für jeden ausgewählten Termin 63 dimensionslose Koeffizienten $c_{i,t}$, wobei bei der meteorologischen Interpretation nur die ersten fünf von Interesse sein sollen.

c_i-Werte

Wie bereits aus der Diskussion der natürlichen Orthogonalfunktionen hervorgeht, besitzt die 1. Funktion neben dem klimatologischen Mittelwert den größten Einfluß. Sie zeigt für die Größen Temperatur, Geopotential und Feuchte die größten Schwankebreiten.

Folglich ist der Faktor c_1 ein direktes Maß für den Wärmehalten der Luftmasse. Die c_1-Werte zeigen also an, ob die Luftmasse über dem OWS-C-"tropisch", "gemäßigt" oder "polar" ist. Bei einer Luftmasse tropischen Ursprungs sind die c_1-Werte positiv, bei Polarluft negativ. Die Werte sind ebenfalls umso höher, je größer die Schicht ist, die von der Wärmeluf zuweiswiese der Kaltluft durchsetzt wird.

Dies mag vielleicht auch ein Grund dafür sein, daß die c-Werte teilweise eine Zeitverschiebung aufweisen, d.h. ein c-Wert nimmt manchmal erst 12 oder 24 Stunden später einen für die Wettersituation typischen Wert an.

Beispiel:

Obwohl die Temperatur in 500 mb im Februar -32°C beträgt und damit als "polar" angesehen werden muß, was sich in einem stark negativen c_1-Wert niederschlagen sollte, tritt das Maximum erst 12 oder 24 Stunden später auf, d.h. also erst dann, wenn durch turbulente Durchmischung eine größere Schicht mit Kaltluft durchsetzt ist. Ähnliche Überlegungen treffen sicher auch auf die anderen Messgrößen zu.

Da bei der 1. natürlichen Orthogonalfunktion eine sehr
starke Kopplung zwischen sensibler und potentieller Energie besteht, machen die c_1-Werte gleichzeitig eine Aussage darüber, ob sich das OWS-C- in der Höhe im Einflußbereich eines Troges oder eines Hochdruckrückens befindet.

σ_2- und σ_3-Werte

Anhand des Kurvenverlaufs der 2. und 3. Ordnung der Orthogonalfunktionen mit den dominanten Windanteilen besonders in höheren Schichten lassen sich die σ_2- und σ_3-Werte als Charakteristikum für die Richtung der Höhenströmung interpretieren.

Wie bereits erwähnt, hat bei der 2. Orthogonalfunktion die v-Komponente den energetisch größten Anteil an allen Meßgrößen, d.h. also, daß dieser c-Wert je nach Vorzeichen anzeigt, ob die v-Komponente größer oder kleiner ist als der berechnete Mittelwert.

Was bedeutet aber "kleiner oder größer als der Mittelwert" in Bezug auf die tatsächliche Windrichtung? Genauere Aufschlüsse gibt die Tabelle (2)

<table>
<thead>
<tr>
<th>Schicht</th>
<th>\tilde{u}</th>
<th>\tilde{v}</th>
<th>mittl. quadr. Abweichg. v</th>
<th>Mittelw. 2. Orth. Fkt. v'</th>
<th>3. Orth. Fkt. u'</th>
<th>\tilde{v}/v'</th>
<th>\tilde{u}/u'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+4,9</td>
<td>+2,1</td>
<td>-2,5</td>
<td>-4,2</td>
<td>-0,8</td>
<td>-1,2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+7,6</td>
<td>+3,1</td>
<td>-4,3</td>
<td>-6,3</td>
<td>-0,7</td>
<td>-1,2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+10,6</td>
<td>+3,9</td>
<td>-6,1</td>
<td>-8,2</td>
<td>-0,6</td>
<td>-1,3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+14,1</td>
<td>+5,6</td>
<td>-8,4</td>
<td>-10,6</td>
<td>-0,6</td>
<td>-1,3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+18,3</td>
<td>+5,9</td>
<td>-10,8</td>
<td>-13,1</td>
<td>-0,6</td>
<td>-1,4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+18,4</td>
<td>+4,9</td>
<td>-8,5</td>
<td>-9,8</td>
<td>$\approx -0,6$</td>
<td>$\approx -1,3$</td>
<td></td>
</tr>
</tbody>
</table>

Die Orthogonalfunktionen geben in einer Reihendarstellung Zusatzinformationen zum berechneten Mittelwert.

Die Mittelwerte der u- und v-Komponente für die verschiedenen Schichten sind der Spalte 2 und 3 zu entnehmen.
Beide Komponenten sind positiv und entsprechen so einem mittleren Wind aus ca. 250°.

Um zu sehen, wann die Komponenten ihr Vorzeichen wechseln und wie groß gleichzeitig die dazugehörigen Koeffizienten sind, muß man die Schwankungsbreite der Windkomponenten in den entsprechenden natürlichen Orthogonalfunktionen heranziehen, also die mittleren quadratischen Abweichungen vom Mittelwert (Spalte 3 u. 4).

Aus den Spalten 5 und 6 wird ersichtlich, wie groß die \(c_2 \)- und \(c_3 \)-Werte etwa sein müssen, damit ein Vorzeichenwechsel in den Windkomponenten und damit eine markante Richtungsänderung auftritt.

Wenn \(c_2 \) negativ ist und kleiner \(-0,6 \), dann hat die Strömung eine nördliche Komponente (v-Komponente negativ), wenn positiv und größer \(-0,6 \), eine südliche (v-Komponente positiv). Ist \(c_3 \) negativ und ungefähr kleiner \(-1 \), so kommt der Wind aus östlichen Richtungen (u-Komponente negativ), ist \(c_3 \) positiv und größer \(-1 \), aus westlichen Richtungen (u-Komponente positiv).

Zusammen mit dem \(c_2 \)- und dem \(c_3 \)-Wert läßt sich genau die Strömungsrichtung abgrenzen. Hat man also eine nordwestliche Luftströmung, so müßte \(c_2 \) kleiner \(-0,6 \) sein und \(c_3 \) größer \(-1 \). Würde der Wind auf Südwest rückdrehen, müßte sich dies in einer Änderung des \(c_2 \)-Wertes zum positiven Bereich bemerkbar machen. Auf diese Weise hat man alle Strömungsrichtungen erfaßt.

\(c_4 \)-Werte

Durch die natürlichen Orthogonalfunktionen höherer Ordnung werden Wettererscheinungen im kleinskalierten Bereich erfaßt. Der Kurvenverlauf der 4. Orthogonalfunktion zeigt zwar wieder die v-Komponente als energetisch wichtigste Größe, aber wie später gezeigt wird, reagieren die zeitabhängigen Koeffizienten der 4. Orthogonalfunktion sehr empfindlich auf Bodendruckschwankungen,
besonders im Zusammenhang mit Zyklonen und damit verbundenen Frontdurchgängen. Außerdem wird schon durch den \(c_2 \)-Wert die \(v \)-Komponente erfaßt.

Ist der \(c_4 \)-Wert positiv, so zeigt sich im synoptischen Bild ein Tiefdruck gekoppelt mit hoher Feuchte. Bei negativen \(c_4 \)-Werten findet man höheren Druck korreliert mit geringer Feuchte. Sinkt der Bodendruck, so äußert sich dies in einer Zunahme des \(c_4 \)-Wertes – umgekehrt schlägt sich Druckzunahme in einem Abfallen des \(c_4 \)-Wertes nieder.

\(c_5 \)-Werte

Mit der 5. Orthogonalfunktion und den dazugehörigen Koeffizienten gewinnt man weiteren Einblick in den augenblicklichen Zustand der Atmosphäre.

Wie bei der 1. Orthogonalfunktion ist auch hier die Temperatur das energetisch dominante Element. Es wird allerdings nicht die Luftmasseneigenschaft "tropisch, gemäßigt, polar" beschrieben, sondern eine Aussage über die vertikale Schichtung der Luftmasse in der unteren Atmosphäre gemacht. Der \(c_5 \)-Wert ist also ein Kriterium dafür, ob die untere Atmosphäre stabil oder labil geschichtet ist.

Sind die Koeffizienten positiv, so liegt die Kaltluft unter der Warmluft (stabil). Sind sie negativ, so ist die untere Atmosphäre labil geschichtet – die Kaltluft liegt über der Warmluft.

Bei den Koeffizienten noch höherer Ordnung wird es immer schwieriger, Zuordnungen zu bestimmten synoptischen Erscheinungen zu treffen, da auch die Schwankungsbreiten der natürlichen Orthogonalfunktionen immer geringer werden.
Mit den ersten fünf Koeffizienten vermag man die Wetter-
situation jedoch in ersten Ansätzen schon recht gut zu
klassifizieren.

Zusammenfassend sei noch einmal die Zuordnung der ein-
zelnen zeitabhängigen Koeffizienten beschrieben:
Der c_1-Wert gibt die Luftmasseneigenschaft "tropisch,
gemäßigt, polar" an. Mit den c_2- und den c_3-Werten er-
fasst man die Richtung der Höhenströmung. Die c_4- und
c_5-Werte charakterisieren die kleinerskaligen Vorgänge
in der Atmosphäre, wie z.B. Hoch- und Tiefdruckgebiete
am Boden, Frontdurchgänge und die Stabilität der Schicht-
ung.

9.1. Zeitreihen der Koeffizienten c_1 bis c_5 vom 1. bis
29. Februar 1964

Um das Zusammenwirken der ersten fünf Koeffizienten zu
beschreiben und ihre Bedeutung anhand von Wettersitu-
tionen zu belegen, wurde der Zeitabschnitt 1. bis 29.
Februar 1964 herangezogen, ein Zeitraum, der willkürlich
ausgewählt wurde.

Allein aus der oben beschriebenen Bedeutung der zeitab-
hängigen Koeffizienten müssten sich bei richtiger Inter-
pretation schon bestimmte logische Kombinationen der
Koeffizienten ergeben. So müssten stark negative c_1-Werte,
also Polarluft mit ebenso negativen c_2-Werten gekoppelt
sein, d.h. nördlichen Winden. Bei der u-Komponente sind
wahrscheinlich beide Vorzeichen möglich. Außer dem müssten
stark positive c_4-Werte mit stark negativen c_5-Werten
korreliert sein, d.h. Tiefdruck und hohe Feuchte mit
stärker Labilität.

Die Zeitreihen für die Koeffizienten c_1 bis c_5 zeigen
das Zusammenspiel der Koeffizienten (Abb. 31). Markant
sind die stark negativen c_1-Koeffizienten, d.h. Kalt-
Die empirische Zuordnung bestimmter Zahlenwerte von c_1 zu reiner Polar- bzw. Tropikluft im Monat Februar stützt sich auf eine entsprechende Untersuchung von H. ERDMANN für die Station Stuttgart/Erlangen.

Am 5., 7., 10. und 17. Februar sind die c_1-Werte extrem positiv, was nach dem Vorhergehenden nahelegt, daß die Luftmasse über dem OWS-C- tropischen Ursprungs ist. Im restlichen Untersuchungszeitraum sind die c_1-Werte von mittlerer Größenordnung, was auf den Einfluß gemäßigter Luft schließen läßt.

Um die berechneten Koeffizienten mit der tatsächlichen Wettergesituation vergleichen zu können und um die Bedeutung der verschiedenen Koeffizienten zu belegen, wurden den gesammelten Offenbacher Wetterkarten bestimmte Daten entnommen, mit denen Zeitreihen für den gleichen Zeitraum und für entsprechende Parameter aufgestellt wurden. Als Luftmassenkennmittel wurde die Temperatur über dem OWS-C- in 500 mb gewählt.

Da pro Tag nur die 00-Uhr Wetterkarte zur Verfügung stand, während bei dem OWS-C- Daten zwei Termine pro Tag vorlagen - 00 GMT und 12 GMT - , wurden zum besseren Vergleich auch nur die zeitabhängigen Koeffizienten für den 00-Uhr-Termin verwendet.

Abb. 32 zeigt einen ausgeprägten stark zeitlich korrelierten Verlauf zwischen den c_1-Werten, die ja als Luftmassenkennmittel interpretiert wurden, und der Temperatur in 500 mb. An den Terminen mit sehr hohen negativen Koeffizienten befand sich das OWS-C- tatsächlich in Polarkluft. Analog reagieren die Koeffizienten auf den Vorstoß tropischer Luftmassen. Weitere Zusammenhänge lassen sich aus dem zeitlichen Verlauf der c_2- und c_3-Werte ablesen, die die Richtung der Höhenströmung angeben.

Die ausgeprägtesten Wetterlagen bringen Nordwest- und Südwest-Strömungen. Stark negative (positive) c_3-Werte -
Abb. 31 Zeitreihen der ersten fünf Koeffizienten $c_{i,t}$ vom 1. bis 29. Feb 1964
Abb. 32 Zeitreihen c_4-Werte und 500 mb-Temperatur über dem OWS - C -

Abb. 33 Zeitreihen c_4- und c_5-Werte und Bodenluftdruck am OWS - C -
nördliche Winde (südliche Winde) - sind zwar immer mit
Abkühlung (Erwärmung) der Atmosphäre gekoppelt, jedoch
erst die Größenordnung des c_3-Wertes (u-Komponente)
macht eine Aussage über den Grad der Temperaturänderung.

Die größten KaltluftEinbrüche (~35°C) finden bei nord-
westlicher Strömung statt (13. und 28. Febr.), d.h. dann,
wenne kalte Festlandsluft vorstößt. Bei nordöstlicher
Strömung (3. Febr.) ist die Abkühlung wegen des maritimen
Charakters der Luftmasse lange nicht so extrem (~29°C).

Analog bringen Südwest-Wetterlagen, also Vordringen
maritimer Tropikluft die größte Erwärmung.
Obwohl am 23. Februar der c_2-Wert einen hohen positiven
Wert besitzt (südliche Komponente), bringt die Wettersi-
tuation wegen des negativen c_3-Wertes (östliche Komponente)
keine starke Erwärmung der Atmosphäre (~25°C).

Abb. 33 zeigt den zeitlichen Verlauf der c_4-Werte zusam-
men mit der zeitlichen Änderung des Bodenluftdrucks.
Beide Kurven sind wieder relativ gut miteinander korre-
liert. Tiefdruck ist mit stark positiven c_4-Werten ge-
koppelt und Hochdruck mit hohen negativen.
Den größten Wert nimmt c_4 am 24. Februar im Kern einer
Sturmzyklone mit 955 mb an.

Weiter unten wird bei einer genau Schilderung der Wetter-
lage gezeigt, daß sich ebenfalls Frontdurchgänge im c_4-Wert
bemerkbar machen.
Erwartungsgemäß verhalten sich die c_5-Werte, die eine Aus-
sage über die Stabilitätsverhältnisse in tieferen Niveaus
machen, gegenläufig zu den c_4-Werten. So findet man in
der Sturmzyklone am 24. Februar natürlich eine extrem
labile Schichtung der unteren Atmosphäre vor.
9.2. Beschreibung der zeitabhängigen Koeffizienten $c_{i,t}$ anhand von synoptischen Wetterkarten

5. Febr. 1964 (s. Abb. 34)

An der Vorderseite eines westatlantischen Tiefdrucksystems mit Kern (980 mb) vor Neufundland hat sich ein kräftiger Höhenhochdruckkeil ausgebildet, der von der Biskaya bis Südgroenland reicht. Dieser Hochdruckkeil in der Höhe ist am Boden mit einem Hochdruckgebiet (1035 mb) verbunden, dessen Schwerpunkt zwischen Island und Schottland liegt. Zwischen diesem Hoch und dem westatlantischen Tiefdrucksystem dringt mit einer südwestlichen Höhenströmung ($c_2 = +1,0$; $c_3 = -0,7$) auf der Rückseite einer Warmfront Luft tropischen Ursprungs ($c_1 = +1,3$) nach Norden vor. Die Mitteltemperatur der Troposphäre stieg um mehr als 10°C an. Die 500 mb-Temperatur über dem OWS-C beträgt -22°C. Am Boden liegt die Station hinter der Warmfront im Einflußbereich einer Antizyklone ($c_4 = 0$). Der c_5-Wert von +1,3 läßt auf eine ziemlich stabile Schichtung in der unteren Atmosphäre schließen, die durch das kühlere Wasser noch zusätzlich stabilisiert wird.

6. Febr. 1964 (s. Abb. 35)

Der Kern (975 mb) des westatlantischen Tiefdrucksystems hat sich nach Labrador verlagert, so daß das OWS-C jetzt auf der Rückseite der Kaltfront liegt. Der Kaltfrontdruckgang und der damit verbundene Druckanstieg und Feuchterückgang schlagen sich sofort im c_4-Wert nieder. Er sinkt von 0 auf $-1,0$. Die Stabilität erhöht sich von $c_5 = +1,3$ auf $+1,4$.
Gleichzeitig wanderte auf der Ostseite des Höhentroges ein Tiefdruckgebiet rasch ostwärts und erreichte am 6. Februar früh das Seegebiet südlich Neufundland. Seine Rückseitenkaltluft führte zu einer erneuten Vertiefung des breiten westatlantischen Höhentroges (c₁ sinkt auf +1,1 und später sogar auf +0,2), wodurch der Hochdruckkeil nach Osten schwenkte und mit ihm das Bodenhoch (1040 mb) südostwärts wanderte. Die Höhenströmung über dem OWS-C- drehte mehr auf Süd, was sich auch in einem Ansteigen des c₂-Wertes auf +1,7 äußerte.

7. Febr. 1964 (s. Abb. 36)

Das Hoch über den Britischen Inseln hat sich weiter verstärkt (Kerndruck 1045 mb), ohne seine Lage wesentlich zu ändern. Das südlich von Neufundland gelegene Randtief wanderte mit der Höhenströmung nordostwärts. Gleichzeitig erfolgte westlich der Hudson-Bay ein kräftiger Kaltluftausbruch, der einen nach Nordosten gerichteten Warmluftvorstoß vor der amerikanischen Ostküste anregte. Die an der Westseite des nun abgeschlossenen Höhenhochs nordwärts strömende Warmluft führte so zu einer erneuten Erwärmung der Troposphäre über dem OWS-C- auf -22°C (c₁ = +1,3), wodurch der Höhentrog abgeschwächt wurde.

Die Höhenströmung verläuft immer noch südwestlich, c₂ = +0,7 und c₃ = -0,1. Am Boden wurde das OWS-C- von einer Warmfront überquert, dadurch stieg die Feuchte und fiel der Bodendruck. Der c₄-Wert stieg wieder auf -0,3. Gleichzeitig verminderte sich etwas die Stabilität, c₅ erniedrigt sich von +1,4 auf +1,2.

8. Febr. 1964 (s. Abb. 37)

Mit einer kräftigen südwestlichen Höhenströmung (c₂ = +1,2, c₃ = -0,7) zog ein Tief (985 mb) aus dem New Yorker Raum zum St. Lorenz Golf. Durch die Warmluftadvektion auf seiner Vorderseite baute sich vor der ostamerikanischen Küste ein Höhenhochkeil auf, der den Trog westlich der Hudson-Bay nach Osten abdrängte, wodurch
die Temperatur über dem OWS-C- in 500 mb wieder auf \(-25^\circ C\)
zurückging \((c_1 = +1,1)\). Das Randtief wanderte unter Ab-
chwäschung weiter nach Nordosten, wobei die Station auf
die Rückseite der Kaltfront rückte. Hinter der Kaltfront
gehärt der \(c_4\)-Wert sofort wieder auf \(-1,5\) zurück. Der
große Sprung dieses Koeffizienten wird sicher auch durch
den Druckanstieg im Einflußbereich des Hochdruckkeils
verursacht. Die Stabilität der unteren Atmosphäre ist
mit \(c_5 = +0,7\) etwas schwächer geworden.

9. Febr. 1964 (s. Abb. 38)

Das gestern über dem St. Lorenz Golf gelegene Tief ist
unter Vertiefung \((965 mb)\) weiter nach Labrador gezogen.
In der von den Süd­staaten nach Nordosten gerichteten
Frontalzone ist eine starke Zyklogenese zu beobachten.
Die Strömung über der Station kommt jetzt aus SSE.
Dabei ändert sich der \(c_3\)-Wert von \(-0,3\) auf \(-1,1\). An
der Westseite des ortsfesten Britischen Hochs fließt
am Boden hinter der Warmfront erneut Warmluft nach Nor-
den. Der Warmfrontdurchgang wird wieder im Ansteigen
des \(c_4\)-Wertes von \(-1,5\) auf \(-0,6\) deutlich. Mit einem
\(c_5\)-Wert von \(+1,1\) ist die untere Atmosphäre noch immer
relativ stabil geschichtet.

10. Febr. 1964 (s. Abb. 39)

An der Westseite der sich jetzt ziemlich rasch abswäch-
chenden Antizyklone in 500 mb und unter Einfluß des mitt-
telatlantischen Hochs konnte mit einer fast südlichen
Höhenströmung \((c_2 = +1,9, c_3 = +0,7)\) weiterhin Warm-
luft nach Norden vordringen, so daß die 500 mb-Tempera-
tur über dem OWS-C- auf \(-21^\circ C\) anstieg \((c_1 = +1,6)\).

Der von den großen amerikanischen Seen in südöstliche
Richtung reichende Höhen­trog verlagerte sich zum West-
atlantik. Das dazugehörige Bodentief \((950 mb)\) bewegte
sich NNE-wärts vor die Süd­küste Grönlands, wobei in
allen Niveaus eine Vertiefung eintrat. Unter dem Ein-
fluß des herannahenden Tiefdruckgebietes steigt der
c_4-Wert weiter auf + 0,2 an. Die damit verbundene langsam beginnende Instabilität der unteren Atmosphäre äußert sich in einem Absinken des c_5-Wertes von +1,1 auf +0,2.

11. Febr. 1964 (s. Abb. 40)

Der Höhentrog hat sich weiter nach Osten verlagert. Dadurch ist das OWS-C- auf die Rückseite des umfangreichen nordatlantischen Sturzmittelpunkts geraten, was sich in 500 mb in einem Temperatursturz von 11°C wiederspiegelt. Der dazu gehörige c_1-Wert ist von +1,6 auf -0,6 gesunken. Die Höhenströmung ist mit c_2 = +1,1 und c_3 = +0,7 noch immer südwestlich, beginnt aber langsam auf nördliche Richtung zu drehen. Die Station liegt jetzt an der Rückseite und der c_4-Wert sinkt auf -1,4. Die Schichtung der unteren Atmosphäre ist stabiler geworden (c_5 = +0,7).

10. SCHLUSSBEMERKUNG

In dieser Arbeit konnten halbtägige Radiosonden-Daten vom OWS-C- getrennt für vier verschiedene Jahreszeiten nach natürlichen Orthogonalfunktionen entwickelt werden.

Dabei wurden zuerst für jede Messgröße und jedes Niveau monatliche Mittelwerte berechnet und dann durch Entwicklung in eine zeitliche Fourierreihe eine zeitlich stetige
Funktion des Jahresgangs abgeleitet. Der geglättete mittlere Jahresgang der Meßgrößen gab eine erste Darstellung der klimatologischen Verhältnisse.

Die aktuellen Abweichungen von diesem Jahresgang wurden dann nach vertikalen natürlichen Orthogonalfunktionen entwickelt.

Es konnte herausgefunden werden, daß sich Druckänderungen im Zusammenhang mit wandernden Zyklonen und ihren Fronten besonders in den vierten Koeffizienten niederschlagen. Der fünfte Koeffizient beschreibt die Schichtung und die
damit verbundene Stabilität der unteren Atmosphäre.

Mit den ersten fünf Koeffizienten der natürlichen Orthogonalfunktionen ist es in ersten Ansätzen recht gut möglich, die wechselnden Wettersituationen über dem OWS-C zu jedem Termin zu beschreiben. Eine systematische Untersuchung der zeitabhängigen Koeffizienten könnte zu statistischen Vorhersagemethoden für die Station unter Verwendung von vertikalen natürlichen Orthogonalfunktionen führen.
LITERATURVERZEICHNIS

5. Haurwitz, B., Dynamic meteorology, New York, 1941

6. Koschmieder, H., Dynamische Meteorologie, Leipzig, 1941

7. Liljequist, G.H., Allgemeine Meteorologie, Braunschweig, 1974

VERZEICHNIS DER BENUTZTEN SYMBOLE

ϕ : Geopotential
q : spezifische Feuchte gr Wasserdampf
T : Temperatur
θ : potentielle Temperatur
u : zonaler Windanteil
v : meridionaler Windanteil
p : Luftdruck
e : Dampfdruck
z : geometrische Höhe
g : Erdbeschleunigung $9,81 \text{ m/s}^2$
c_p, c_a : spezifische Wärme bei konstantem Druck
und bei konstantem Volumen $c_a = 1,004 \text{ Joule/gr/Grad}$
x : $= R/c_p$
ρ : spez. Volumen
R : Gaskonstante der Luft $2,868 \times 10^6 \text{ cm}^2/\text{sec}^2/\text{Grad}^1$
L : latente Wärme des Wasserdampfes
$L = 4,1855 \times (597,3 - 0,57 t) \text{ Joule/gr}$
P : potentielle Energie pro M.E.)
I : innere Energie pro M.E.) Joule/gr
A : verfügbare pot. Energie)
E_{kin} : kinetische Energie)
γ : Stabilitätsfaktor $\text{cm}^2/\text{sec}^2/\text{Grad}^2$
F_t : Datenvektor der Meßwerte
$c_{i,t}$: Maßkoeffizient der natürl. Orthogonalfunktion
$p_{i,t}$: i-te natürliche Orthogonalfunktion
F_n : Teilreihe
F_t : Fehler, wenn man die Reihe nach n Reihengliedern abbricht
\bar{F}_n : mittlerer quadratischer Fehler
A : Kovarianzmatrix
E : Einheitsmatrix
D : Diagonalmatrix
S : Orthogonalmatrix
S^T : Transponierte von S
λ_i : Eigenwerte der Matrix A