Impact of an adiabatic correction technique on the simulation of CFC-12 in a model of the North Atlantic Ocean

Jun Zhao,1 Richard J. Greatbatch,1 Jinyu Sheng,1 Carsten Eden,2 and Kumiko Azetsu-Scott3

Received 8 April 2004; accepted 4 June 2004; published 29 June 2004.

A model of the North Atlantic Ocean is used to simulate the spreading of CFC-12 from the Labrador Sea deep convection site. The standard version of the model fails to capture the local maximum in CFC-12 concentration that is observed along the continental slope of the western boundary. Hydrographic data are used to apply a simple correction to the model’s horizontal momentum equations. The corrected model is much more successful at capturing the nearslope maximum in CFC-12 concentration than the uncorrected model and also exhibits a 50% increase of the deep southward export of CFC-12 at 24°N. The difference between the two model runs is shown to be a consequence of the different paths taken by the Deep Western Boundary Current in the two model versions.

1. Introduction

[2] The semi-prognostic method (SPM) was introduced by [Sheng et al., 2001] as a simple means of adjusting an ocean model to correct for systematic model error (e.g., poor representation of the Gulf Stream and the North Atlantic Current systems, see [Eden et al., 2004]). The adjustment is achieved using hydrographic data as input, but whereas in the robust diagnostic method of [Sarmiento and Bryan, 1982] the correction is applied to the model potential temperature and salinity equations, the semi-prognostic correction is applied to the model momentum equations. Since the active tracer equations carried by the model are unchanged by the SPM (i.e., the model is adiabatic), the equations governing passive tracers are also unchanged. For this reason, the SPM is ideal for use in studies using passive tracers. In this letter we provide the first example of the use of the SPM in a tracer study.

[3] Chlorofluorocarbons (CFCs) are anthropogenic compounds released into the atmosphere since the 1930s. CFCs enter the ocean by gas exchange at the sea surface and are then subducted into the thermocline or mixed through convection to the deep ocean. Since CFCs are chemically and biologically inert in sea water, their temporal and spatial distribution can be used to identify water mass pathways, in particular the equatorward spreading of newly formed dense water masses and their associated climate anomalies [Fine et al., 2002]. It follows that a model’s ability to simulate the observed distribution and spreading of CFCs provides a stringent test of a model’s veracity and its suitability to study the carbon cycle, and the uptake of anthropogenic CO2 by the ocean. [England et al., 1994] were the first to attempt a simulation of the uptake and spreading of CFCs using a three-dimensional global ocean model. Model-calculated CFC concentrations have since been used to test model physics parameterizations (see [England and Maier-Reimer, 2001] and [Beissmann and Redler, 2003] for an overview), and attempts have been made to fit observed and modelled CFC distributions by adjusting the gas exchange coefficient used in the model [Gray and Haine, 2001; Haine et al., 2003]. [Dutay et al., 2002] compared the simulated CFC fields produced by 13 different global ocean models, with horizontal resolutions ranging from 0.5° to 5°. They noted the difficulty models have in simulating the CFC distribution in the Deep Western Boundary Current (DWBC) region of the North Atlantic [see also, England and Holloway, 1998]. Here, we show the impact of the SPM on the simulation of CFC-12 in a model of the North Atlantic.

2. The Semi-Prognostic Method (SPM)

[4] A comprehensive review of the SPM is given by [Greatbatch et al., 2004]. In the standard version [Sheng et al., 2001], the density in the model’s hydrostatic equation is replaced by a linear combination of model-computed (ρm) and climatological (ρc) density:

$$\frac{\partial \rho}{\partial z} = -g (\alpha \rho_m + (1 - \alpha) \rho_c).$$ (1)

Here ρ is the pressure variable carried by the model and 0 ≤ α ≤ 1. Putting α = 1 (α = 0) makes the model purely prognostic (diagnostic). p is not the same as the physical pressure, p*. The latter satisfies the usual hydrostatic equation, ρ* g = −ρm g, and surface boundary condition, p* = p0 + h, where h is the sea surface height and ρ0 is a representative density for sea water (note that p = p* at the surface; see [Greatbatch et al., 2004]). Putting p = p* + p, and substituting for p in the model’s horizontal momentum equation then gives

$$\frac{\partial V}{\partial t} + \mathbf{f} \times \mathbf{V} = -\frac{1}{\rho_c} \nabla p - \frac{1}{\rho_c} \nabla \rho + \ldots .$$ (2)
where \(\mathbf{v} \) is the horizontal velocity vector and \(\mathbf{f} \times \mathbf{v} \) is the Coriolis term. It is clear from (2) that use of the SPM adds a correction term, \(-\frac{f}{H} \nabla \rho\), to the model’s horizontal momentum equation. Importantly, the tracer equations carried by the model are unchanged. Since the standard version of the SPM depends on the instantaneous model state, it does have some inherent drawbacks (e.g., reduced wave propagation speeds, damped mesoscale eddy activity and spurious interaction with topography). [Eden et al., 2004] introduced modified methods to overcome these drawbacks. To see how the modified methods work, we rewrite (1) in the form

$$\frac{\partial p}{\partial z} = -g \rho_a - g(1 - \alpha)(\rho_c - \rho_m)$$

so that \(-g(1 - \alpha)(\rho_c - \rho_m)\) appears as the semi-prognostic correction term. In the “smoothed” and “mean” methods, the correction term is smoothed spatially and temporally, respectively, while in the “tapered” method, the correction term is tapered to zero near bottom topography. In this study, the smoothed, mean, and tapered SPM’s are combined (hereafter, the “modified” semi-prognostic method), using a smoothing scale of several model grid points and annual time averaging.

3. Model Set-Up and Experiments

[5] We use the FLAME ocean model [Dengg et al., 1999] applied to the Atlantic Ocean from 18°S to 70°N with a horizontal resolution of 4/3° in longitude and 4/3° cosφ in latitude (φ) with 45 unevenly spaced z-levels in the vertical. The model set-up and forcing (which is seasonal) are the same as in [Eden et al., 2004] apart from (i) the different horizontal resolution, (ii) the use of the [Redi, 1982] isopycnal mixing scheme, (iii) the [Gent and McWilliams, 1990] scheme for tracer transport and (iv) the bottom boundary layer parameterization (BBL) of [Beckmann and Döscher, 1997] to represent the dense overflows across the sills in the subpolar North Atlantic. The isopycnal diffusivity and thickness diffusivity coefficients are set to 2 \(\times 10^7\) cm²s⁻¹, decaying with depth to 0.5 \(\times 10^7\) cm²s⁻¹ below 4000 m. The background horizontal diffusivity (viscosity) is set to \(10^6\) cos φ cm²s⁻¹ (\(10^8\) cos φ cm²s⁻¹) and the turbulent kinetic energy model of [Gaspar et al., 1990] is used to calculate the vertical eddy diffusivity and viscosity. The climatological data used for the semi-prognostic method is a modification of that of [Boyer and Levitus, 1997].

[6] To parameterize the net flux of CFC-12 at the sea surface we use

$$F = K(C_{sat} - C_{water}),$$

where \(C_{sat} = A \times pCFC \), \(A \) is the solubility coefficient [Warner and Weiss, 1985], \(pCFC \) is the partial pressure of CFC-12 in the atmosphere at the sea surface, \(C_{water} \) is the model-calculated concentration of CFC-12 at the surface of the ocean, and \(K \) is the piston velocity defined as [Wanninkhof, 1992]:

$$K = 0.39(S_c/660)^{-0.5}U_{wind}^2.$$
sub-surface maximum at about 2000 m depth associated with LSW, and it is here that the major difference between the two model runs is found. In particular, the sub-surface CFC-12 maximum produced by the modified semi-prognostic model is close to the continental slope, while the maximum produced by the prognostic model is away from the slope (as in Figure 1). Clearly, the semi-prognostic case compares much better with the observations.

Figure 3 compares the performance of the two models in the subtropics. Figures 3a and 3b show the concentration of CFC-12 along 24°N. Both model versions agree well above 1000 m, but below 1000 m, the semi-prognostic version shows a much stronger maximum in concentration associated with the DWBC. In both model versions, there is no net flux of CFC-12 to the south above 1000 m (as shown by the cumulative transport shown in Figure 3c), whereas below 1000 m, there is a 50% increase in the net southward transport of CFC-12 in the semi-prognostic compared to the prognostic model versions (Figure 3d), almost all of this increase being associated with the DWBC.

5. Summary and Discussion

Poor representation of the concentration of CFCs in the DWBC region is a common problem in models of the North Atlantic [England and Maier-Reimer, 2001; Dutay et al., 2002]. In this letter, we have shown that using the semi-prognostic method to add a correction to the model horizontal momentum equations [Greatbatch et al., 2004] leads to a more realistic distribution of CFCs near the western boundary than is found in a companion prognostic model run. Whereas in the prognostic model, the DWBC separates...
from the western boundary, leading to an interior maximum in CFC concentration, in the semi-prognostic run, the DWBC follows the continental slope, leading to a concentration maximum near the boundary, and more in keeping with the observations. We note that the semi-prognostic method is well suited for use in tracer studies, because the correction to the model is added to the momentum equations, not the tracer equations. The semi-prognostic model also shows enhanced southward export of CFC-12 through 24°N compared to the prognostic model run.

[12] The failure of profiling floats released in the Labrador Sea to make their way southward along the western boundary [e.g., Lavender et al., 2000; Fischer and Schott, 2002] has raised questions about exactly how Labrador Sea Water (LSW) spreads from its source region to the rest of the North Atlantic. The existence of a route along the western boundary, following the continental slope, is supported by the potential vorticity maps of [Talley and McCartney, 1982], as well as by tracer measurements [Fine et al., 2002; Smethie et al., 2000; Smethie, 1999, 1993]. Also, [Molinari et al., 1998] detected LSW formed in the early 1990’s near the Bahamas at 26.5°N, suggestive of a “fast track” along the western boundary from the Labrador Sea to the subtropics. These observations support the view that leakage of CFCs (and by inference LSW) does indeed take place along the continental slope, as in our semi-prognostic model run. Nevertheless, as can be seen from Figure 1, the interior pathway along the western side of the mid-Atlantic ridge is not eliminated in our semi-prognostic run, and there is increasing evidence from recent tracer measurements that this interior route is also operative in the North Atlantic (M. Rhein and D. Kieke, personal communication).

[13] Acknowledgments. We wish to thank Jens-Olaf Beismann and Peter Jones for their encouragement and suggestions, and Monika Rhein and Dagmar Kieke for helpful discussions. This project is supported by the Canadian SOLAS (Surface Ocean-Lower Atmosphere Study) and CLIVAR Research Networks funded by NSERC and CFCAS. RJG and JS are also supported by the NSERC/MARTEC/MSC Industrial Research Chair. Comments from reviewers led to improvements in the manuscript.

References
Gray, S. L., and T. W. N. Haine (2001), Constraining a North Atlantic
Ocean general circulation model with chlorofluorocarbon observations,
Greatbatch, R. J., J. Sheng, C. Eden, L. Tang, X. Zhai, and J. Zhao (2004),
Haine, T. W. N., K. J. Richards, and Y. Jia (2003), Chlorofluorocarbon
constraints on North Atlantic ventilation, J. Phys. Oceanogr., 33,
1798–1814.
Sheng, J., R. J. Greatbatch, and D. G. Wright (2001), Improving the utility of ocean circulation models through adjustment of the momentum balance, J. Geophys. Res., 106(C8), 16,711–16,728.
Smethie, W., Jr. (1999), Meridional distribution of CFC’s in the western subtropical Atlantic Ocean, Internat. WOCE Newsletter, 37, 15–17.

R. J. Greatbatch, J. Sheng, and J. Zhao, Department of Oceanography, Dalhousie University, Halifax, NS, Canada, B3H 4J1. (jun.zhao@dal.ca)
C. Eden, Ifm-GEO MAR, Kiel, Germany.
K. Azetsu-Scott, Bedford Institute of Oceanography, Dartmouth, NS, Canada, B2Y 4A2.