Dust deposition: iron source or sink? A case study.

Ye, Y., Wagener, Thibaut, Völker, Christoph, Guieu, C. and Wolf-Gladrow, D. A. (2011) Dust deposition: iron source or sink? A case study. Open Access Biogeosciences (BG), 8 (8). pp. 2107-2124. DOI 10.5194/bg-8-2107-2011.

[img]
Preview
Text
bg-8-2107-2011.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1802Kb) | Preview

Supplementary data:

Abstract

A significant decrease of dissolved iron (DFe) concentration has been observed after dust addition into mesocosms during the DUst experiment in a low Nutrient low chlorophyll Ecosystem (DUNE), carried out in the summer of 2008. Due to low biological productivity at the experiment site, biological consumption of iron can not explain the magnitude of DFe decrease. To understand processes regulating the observed DFe variation, we simulated the experiment using a one-dimensional model of the Fe biogeochemical cycle, coupled with a simple ecosystem model. Different size classes of particles and particle aggregation are taken into account to describe the particle dynamics. DFe concentration is regulated in the model by dissolution from dust particles and adsorption onto particle surfaces, biological uptake, and photochemical mobilisation of particulate iron. The model reproduces the observed DFe decrease after dust addition well. This is essentially explained by particle adsorption and particle aggregation that produces a high export within the first 24 h. The estimated particle adsorption rates range between the measured adsorption rates of soluble iron and those of colloidal iron, indicating both processes controlling the DFe removal during the experiment. A dissolution timescale of 3 days is used in the model, instead of an instantaneous dissolution, underlining the importance of dissolution kinetics on the short-term impact of dust deposition on seawater DFe. Sensitivity studies reveal that initial DFe concentration before dust addition was crucial for the net impact of dust addition on DFe during the DUNE experiment. Based on the balance between abiotic sinks and sources of DFe, a critical DFe concentration has been defined, above which dust deposition acts as a net sink of DFe, rather than a source. Taking into account the role of excess iron binding ligands and biotic processes, the critical DFe concentration might be applied to explain the short-term variability of DFe after natural dust deposition in various different ocean regions.

Document Type: Article
Additional Information: WOS:000294457100008
Keywords: WESTERN MEDITERRANEAN SEA; TROPICAL NORTH-ATLANTIC; DATA-BASED OPTIMIZATION; SAHARAN DUST; DISSOLVED IRON; 1D-ECOSYSTEM MODEL; SURFACE-WATER; TIME-SERIES; 3 LOCATIONS; DEEP OCEAN
Research affiliation: OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography
AWI
Refereed: Yes
Open Access Journal?: Yes
DOI etc.: 10.5194/bg-8-2107-2011
ISSN: 1726-4170
Projects: SOPRAN
Date Deposited: 01 Nov 2012 05:02
Last Modified: 05 Jul 2019 09:44
URI: http://oceanrep.geomar.de/id/eprint/19002

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...