Climatologies from satellite measurements: the impact of orbital sampling on the standard error of the mean

M. Toohey1 and T. von Clarmann2

1GEOMAR Helmholtz-Centre for Ocean Research Kiel, Kiel, Germany
2Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany

Correspondence to: M. Toohey (mtoohey@geomar.de)

Received: 31 October 2012 – Published in Atmos. Meas. Tech. Discuss.: 9 November 2012
Revised: 19 February 2013 – Accepted: 10 March 2013 – Published: 10 April 2013

Abstract. Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM). However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a) the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b) the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS) satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O_3 in $^\circ$ latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and sampled field. The occurrence of such instances is thus very sensitive to slight changes in the sampling distribution, and to the variations in the measured field. This study highlights the need for caution in the interpretation of the oft-used classically computed SEM, and outlines a relatively simple methodology that can be used to assess one component of the uncertainty in monthly mean zonal mean climatologies produced from measurements from satellite-borne instruments.

1 Introduction

Atmospheric observations are often averaged within time-space intervals, such as calendar months and latitude bands, producing so-called “climatologies” (e.g., Grooß and Russell III, 2005; Hegglin and Tegtmeier, 2011; von Clarmann et al., 2012). While the motives behind the construction of such climatologies can be simply pragmatic – for instance to simplify comparison with similarly averaged model fields – averaging does have the advantageous effect of reducing the impact of random variations present in individual measurements due to measurement errors and natural variability. The standard error of the mean (SEM) is a statistical quantity which quantifies the random error in the calculated mean value.

In general terms, the standard error describes the random error of an estimate based on limited sampling of a population. For example, the SEM describes the potential variation of a sample mean of n samples if other, equally probably sets of n samples were drawn instead. The “classic” and oft-used
SEM estimator is given by the standard deviation of the sample divided by the square root of the sample size, however, this estimator is only valid when the measurements are uncorrelated. Consideration of correlations of measured data is a standard in various applications of statistical estimators inferred from atmospheric measurements, e.g., Jones et al. (1997) consider inter-site correlations in the estimation of global mean temperatures; Weatherhead et al. (1998) present a scheme to consider autocorrelations in estimating uncertainties in trends; and von Clarmann et al. (2010) propose a generic approach to consider arbitrary correlations in trend estimation. For the SEM, one of the most fundamental estimators of a finite sample of atmospheric data, little literature is available.

Correlations in atmospheric measurement sets depend upon the underlying time-space correlations of the atmosphere, and the time-space sampling patterns of the measurements themselves. Observational datasets from satellite instruments have distinct sampling patterns which depend on the orbit and measurement technique of the instrument. Different sampling patterns can lead to differences in the means of two datasets: in this case, the difference is referred to as a sampling bias. For example, Aghedo et al. (2011) have examined the role of sampling in biasing monthly mean values of satellite-based measurements of tropospheric chemical species and temperature. However, the potential impact that sampling may have on the SEM of atmospheric climatologies has not, to our knowledge, been formally addressed.

The goals of the present study are (1) to raise awareness of the potential impact of sampling on the SEM of climatologies built from satellite-based atmospheric measurement sets, (2) to develop a strategy for estimating the magnitude of its impact, and finally (3) to estimate the impact that sampling considerations have on the SEM for some sample cases. In order to assess the impact of time-space sampling patterns on the SEM, we present a numerical recipe which makes use of model fields from a coupled chemistry climate model. Assuming that the model accurately reproduces, in a statistical sense, the correlations of the true atmosphere on scales larger than the horizontal footprint of the satellite measurements, results from this experiment can be used to draw some general statements about the quality of the SEM estimates usually produced from measurements.

2 Theory and methodology

Given a set of \(N \) measurements \(x_n \), the sample mean \(\bar{x} \) and sample standard deviation \(\hat{\sigma}_x \) are calculated as

\[
\bar{x} = \frac{\sum_{n=1}^{N} x_n}{N} \tag{1}
\]

and

\[
\hat{\sigma}_x = \sqrt{\frac{\sum_{n=1}^{N} (x_i - \bar{x})^2}{(N - 1)}} \tag{2}
\]

respectively. The sample mean is an estimate of the population mean, while the sample standard deviation characterises the scatter of the measured data and, thus, includes both the natural variability within the population and the measurement error. The sample mean is intentionally calculated without consideration of any predicted measurement error for weighting purposes, since measurement errors can be a function of geolocation and, thus, could bias the mean: e.g., measurement errors of gases measured by infrared emission are usually smaller when the atmosphere is warmer, and inverse weighting of the measurements by the measurement error variance would bias the sample mean, so that it is more representative for the warmer parts of the atmosphere.

Each single measurement differs from the sample mean by some amount due to natural variability and measurement error. Treating each such deviation as an “error”, and the sample standard deviation as an estimate of the average “error”, the calculation of the SEM follows directly from generalised Gaussian error propagation:

\[
\text{SEM}^2 = \left(\frac{1}{N}, \ldots, \frac{1}{N} \right) \left(\hat{\sigma}_x^2, \ldots, r_{1,N} \hat{\sigma}_x^2 \right) \left(\frac{1}{N} \right) \tag{3}
\]

\[
= \hat{\sigma}_x^2 \left(\frac{1 + (N - 1)\bar{r}}{N} \right), \tag{4}
\]

where \(r_{i,j} \) is the correlation between measurements \(x_i \) and \(x_j \), and \(\bar{r} \) is the average correlation coefficient between the measurements of the sample (cf. Jones et al., 1997). Defining

\[
k = \sqrt{1 + (N - 1)\bar{r}},
\]

the SEM can be written as

\[
\text{SEM} = \frac{\hat{\sigma}_x}{\sqrt{N}} k. \tag{6}
\]

With \(\bar{r} = 0 \), i.e., independent uncorrelated measurements (both in terms of measurement error and natural variability), \(k = 1 \) and the expression for the SEM simplifies to its common estimator \(\hat{\sigma}_x/\sqrt{N} \). When the average correlation between measurements is positive, \(k > 1 \) and the SEM is greater than \(\hat{\sigma}_x/\sqrt{N} \), i.e., the usual estimator which assumes independent measurements can be seen to underestimate the true SEM. Likewise, when the average correlation between measurements is negative (but not less than \(-1/(N - 1) \)), \(0 < k < 1 \) and the usual estimator, \(\hat{\sigma}_x/\sqrt{N} \), is an overestimate of the true SEM.

Since the variance of the measurements is due to both natural variability and to measurement noise, the SEM reflects both sources of variance. Assuming that measurement individual error \((e_i) \) of any individual measurement \((x_i) \) is uncorrelated with the true atmospheric state \((\tau_i) \), the variance of any measurement set \(\hat{\sigma}_x^2 \) is equal to the sum of the variances of the truth and the measurement error:

\[
\hat{\sigma}_x^2 = \sigma_r^2 + \sigma_e^2. \tag{7}
\]
Under these standard assumptions, the SEM can be similarly decomposed into components reflecting uncertainty in the mean due to natural and measurement error variability:

\[\text{SEM}^2 = \text{SEM}^2_{\text{N}} + \text{SEM}^2_{\tau}. \] \hspace{1cm} (8)

In situations where \(\text{SEM}^2_{\tau} \gg \text{SEM}^2_{\text{N}} \), i.e., where retrievals have large random errors or where the natural variability is small, the SEM reflects the uncertainty in the mean due to the random measurement error. Random measurement errors are by definition uncorrelated, therefore, the mean correlations between measurements should be negligible and the classic SEM estimator is valid in this case. In the other limiting case, where \(\text{SEM}^2_{\tau} \gg \text{SEM}^2_{\text{N}} \), correlations between measurements are impacted by the patterns of variability within the atmosphere, leading to the possibility that correlations between measurements affect the SEM.

In this paper, we indirectly assess the role of the mean correlation coefficient \(\tau \) between measurements, for example satellite-borne instrument sampling patterns. We do so by producing an empirical estimate of the SEM. Here we take advantage of the fact that the SEM can be defined as the standard deviation of all possible sample means (of a given size) drawn from the population. Firstly, we subsample model fields based on the sampling pattern of a satellite instrument. Leaving aside (for the moment) measurement error, each sample of the model data can be thought of as a true value \(\tau_j \) for the location of the sample. Sample means for each latitude bin are calculated from the subsampled model data for this sampling pattern. Then, we produce an “equivalent” sampling pattern, which reproduces the most important features of the sampling (latitude and local solar time), but is randomly shifted in longitude (and universal time such that local solar time is held constant). Each such equivalent sampling pattern can be thought of as resulting from a satellite instrument which has the exact same orbit as the original, except with a different position along the orbit at any point in time. Performing the equivalent sampling a number of times \(J \), we produce an ensemble of equally probable sample means for each bin \(\langle \tau_j \rangle \). The expected value of the sample mean \(\langle \tau_j \rangle \) is taken to be the ensemble mean of the sample means, the error of each ensemble mean is, thus, \(\tau_j - \langle \tau_j \rangle \) and the SEM is:

\[\text{SEM}^2 = \frac{1}{J-1} \sum_{j=1}^{J} (\bar{\tau}_j - \langle \bar{\tau}_j \rangle)^2. \] \hspace{1cm} (9)

Another option would be to replace the expectation value \(\langle \tau_j \rangle \) in Eq. (9) by the true average of all modelled values in the latitude/time bin under consideration. In this case, the resulting standard error of the mean would also include any potential sampling bias, while our analysis aims at the assessment of the random error.

Since correlations between the random errors of measurements should be negligible, the random error component of the SEM can be easily calculated as

\[\text{SEM}_{\tau}^2 = \frac{\sigma_{\tau}^2}{N}. \] \hspace{1cm} (10)

thus, in order to estimate the total SEM for any instrument dataset, one requires an estimate of the SEM due to sampling of the atmosphere’s natural variability (through the resampling exercise and Eq. (9)) and knowledge of the random uncertainty in the measurements, given as the error variance \(\sigma_{\tau}^2 \).

The magnitude of the impact of correlations on the SEM will be quantified by computing values of \(k \) through Eq. (6), by taking the ratio of the empirical SEM and a classic SEM estimator. Substituting Eqs. (7), (8) and (10) into Eq. (6), we can estimate \(k \) based on quantities described above as:

\[k^2 = \frac{\text{SEM}_{\tau}^2 + \sigma_{\tau}^2/N}{\sigma_{\tau}^2/N + \text{SEM}_{\tau}^2/N}. \] \hspace{1cm} (11)

3 Case Studies

3.1 Data

3.1.1 MIPAS sampling

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was a mid-infrared Fourier transform limb emission spectrometer designed and operated for measurement of atmospheric trace species from space (Fischer et al., 2008). MIPAS passed the equator in a southerly direction at 10:00 local time 14.3 times a day, observing the atmosphere during day and night with global coverage from pole to pole.

Two different sampling patterns from the MIPAS mission are used here. From July 2002 to March 2004, MIPAS operated at full spectral resolution, and recorded profiles of limb spectra every 90 s, corresponding to an along-track sampling of approximately 500 km, providing about 1000 vertical profiles per day in its standard observation mode. The latitudes of each MIPAS profile spectra were nominally fixed, i.e., for the majority of orbits, profiles were repeatedly measured at specific latitudes. The sampling pattern associated with this period of high spectral resolution MIPAS measurements is referred to as MIPAS-HR.

Due to problems with the interferometer mirror slide system, MIPAS performed few operations from April to December 2004. In January 2005 regular observations resumed, but with reduced spectral resolution. Lower spectral resolution measurements take less time to perform and, as a result, vertical and horizontal measurement frequency was increased during this time period compared to the former high-spectral resolution period, with horizontal measurement density increasing by about 20 %. The latitudes of measured profiles were not fixed during this period. The sampling pattern for this period of low spectral resolution measurements is referred to as MIPAS-LR. (Note that the identifiers HR and LR...
refer to high and low spectral resolution, respectively, which correspond in contrast to low and high time-space sample resolution, respectively.)

We have taken actual measurement locations for MIPAS measurements from 13 January–17 February 2003 and 22 December 2008–26 January 2009 as example sample patterns for MIPAS-HR and MIPAS-LR periods, respectively. Since there are no drastic differences between the month-to-month sampling patterns of MIPAS (aside from the change between the HR and LR sampling patterns), the sampling patterns from these time periods have been used to define the example sampling patterns for all calendar months for the two periods. It should be noted that since these are actual measurement locations, there are some deviations from the nominal sampling patterns, e.g., sample locations removed because of poor data quality or retrieval problems.

Sampling characteristics for the MIPAS sampling patterns are shown in Figs. 1 and 2. Example daily sample locations for MIPAS-HR (Fig. 1a) span 87.10° S to 89.25° N latitude, with approximately 1000 sample locations per day. Over a full month of sampling, around 800 samples are collected within 5° latitude bins (Fig. 1b). Since the latitudinal spacing of consecutive measurements is approximately 5° (median difference of 4.77°), consecutive measurements are generally not grouped into the same latitude bin (exceptions occurring within the 5–10° N and 85–90° N bins), therefore, consecutive measurements within one latitude bin occur during ascending and descending portions of a single orbit and, as a result, the longitude spacing between consecutive measurements within one latitude bin is approximately 180° longitude (median difference of 177°). Taking an example latitude bin, 55–60° N, Fig. 1c shows the time (decimal Julian day) versus longitude sampling pattern, which shows remarkable uniformity. A histogram of sample count per 30° longitude bin for the 55–60° N latitude bin shows a uniform distribution of longitudinal sampling (Fig. 1d), with between 60 and 70 samples per 30° longitude bin. A similar uniformity of sampling pattern is found in the example Southern Hemisphere (SH) latitude bin of 55–60° S (Fig. 1e, f).

For MIPAS-LR sampling, samples are more closely spaced in time and space, and no longer fixed to certain latitudes. The number of monthly samples within 5° latitude bins is around 1000 (Fig. 2b), with some variation from bin to bin due to the more random nature of the latitudinal sampling. Since the time-space distance between samples is less than for the MIPAS-HR sampling case (3.6° latitude median difference between consecutive samples), consecutive measurements from the MIPAS orbit are occasionally binned within a single 5° latitude bin. For example, approximately 1/4 of samples within the 55–60° N latitude bin are “double samples”, i.e., two samples with small differences in time and space between them. In some cases, double samples within a latitude bin occur preferentially within certain longitude ranges, leading to non-uniformity in the monthly zonal sample distribution. This is the case, for example, in the 55–60° S bin (Fig. 2e, f), with a notable excess of samples in the Eastern Hemisphere (0–180° longitude). Within the 55–60° N bin, however, the double samples are more randomly (and uniformly) distributed (Fig. 2c), and the resulting zonal sample distribution (Fig. 2d) is of similar uniformity as that of MIPAS-HR.

3.1.2 ACE-FTS sampling

The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), on board the SCISAT-1 satellite, uses mid-infrared solar occultation to investigate the chemical composition of the atmosphere (Bernath et al., 2005). The SCISAT-1 satellite was launched on 12 August 2003 and began routine measurements on 21 February 2004. The ACE-FTS measures approximately 15 sunrise and 15 sunset occultations per day. A high inclination (74°), circular low-earth orbit (650 km) leads to global coverage of ACE-FTS measurements, but almost 50% of the occultation measurements made by the ACE-FTS are at latitudes of 60° and higher. The latitudes of the ACE-FTS sunrise and sunset samples vary with time: global latitude coverage is achieved over a period of approximately three months.
For the sampling exercise presented here, we use the ACE-FTS sampling locations from the year 2005, and examine the months March and April as example cases – March gives reasonable coverage of both the southern and northern mid- and high-latitudes, while April sampling covers the tropics and subtropics. Characteristics of the sample patterns for ACE-FTS in March and April are shown in Figs. 3 and 4. For March, highest sample density is found in the high latitudes, which is a product of design, the ACE mission being focused on obtaining measurements during the polar winters and springs when O\textsubscript{3} destruction chemical processes are underway (Bernath et al., 2005). Sample counts within 5° latitude bins for March range between ∼10 to ∼80 depending on latitude within this month. For the example latitude bin of 55–60° N, ACE-FTS samples are collected over a few days near the end of the month (Fig. 3c) while in the 55–60° S bin, ACE-FTS samples are collected over a few days at the beginning of the month (Fig. 3e). Within this time frame, the samples circle the Earth in terms of longitude, and the distribution of longitudes sampled is, thus, relatively uniform given such small sample size, (Fig. 3d, f), with non-uniformity occurring because of missing measurements or overlap of longitudinal sampling cycles. At latitudes higher than the 55–60° bands shown here, sampling density increases substantially (Fig. 3b), and the zonal distributions become more uniform, while at lower latitudes, the opposite is true.

In April, the ACE-FTS sunrise and sunset sampling patterns cross through the tropics (Fig. 4a). Taking 15–20° N as an example latitude bin in the tropics, we see that samples for this bin are composed of measurements at the beginning and end of the month (Fig. 4c). The longitude spacing between consecutive measurements is nominally 24.5°, and samples are collected in this bin over ∼2 days, long enough for the samples to cover the full zonal band, leading to 2 or more samples within 9 out of the 12 30° longitude bins shown in Fig. 4d. There are also a handful of samples within April in the SH high latitudes. Taking the example band of 70–75° S, these samples are collected near the end of April (Fig. 4e), and are notably non-uniform in their longitudinal distribution (Fig. 4f).

3.1.3 Model fields

The CMAM is an extended version of the Canadian Centre for Climate Modelling and Analysis spectral general circulation model. The dynamical core and chemistry scheme are described by Beagley et al. (1997) and de Grandpré et al.
CMAM agrees extremely well with observations, with interannual variability in the tropics, the intra-month variability appears to be of realistic magnitude (see Chapter 7 of SPARC CCMVal, 2010; Toohey et al., 2010). The persistence (i.e., autocorrelation) of zonal mean O$_3$ anomalies in CMAM agrees extremely well with observations, with interannual anomalies established through winter and spring persisting with very high correlation coefficients through summer until early autumn (Tegtmeier and Shepherd, 2007).

Figure 5 shows the monthly mean zonal mean O$_3$ distribution for March, as well as the monthly zonal standard deviation (SD) for each latitude and height. Maxima in short-term (intra-monthly) O$_3$ variability are found generally where spatial gradients in O$_3$ are strong. Variability is generally weak during summer months, therefore, examining variability around the equinoxes allows for a case when there is appreciable variability in both hemispheres.

3.1.4 Measurement random errors

MIPAS random error estimates for O$_3$ measurements during the HR period are taken from the absolute values reported by Fig. 3 of Steck et al. (2007) and for the LR period from Table 7 of von Clarmann et al. (2009b). The random error estimates for the two periods are roughly similar, with slightly larger random errors reported for the HR period. For example, absolute values of random error peak around 30 km, with values of approximately 0.35 ppmv for the HR period, and 0.3 ppmv for the LR period: percent random error between approximately 20 and 40 km altitudes are reported as 5–6 % for the HR period and 4–5 % for the LR period.

ACE-FTS random error estimates for O$_3$ are taken as the root-mean-square of the random errors reported in ACE-FTS v2.2 O$_3$ update dataset for the month of March 2005. This random error profile is approximately equal to the profile reported for tropical retrievals shown in Fig. 6a of Toohey et al. (2010), with peak value of approximately 0.15 ppmv around 30 km, and percent values of 1–2 % between 20 and 60 km. It should be noted that the reported random errors of the ACE-FTS measurements consider only measurement noise, and not other factors (e.g., pointing uncertainty) that may also lead to random errors in the retrieved profiles.

3.2 Sampling procedure

Given the measurement sampling patterns and model fields described above, the resampling experiment was performed as follows: for each sample (defined by its latitude, longitude and time), the closest model timestep was found, and the model fields for this timestep were linearly interpolated to the sample latitude and longitude. To produce an ensemble of “equivalent” sampling patterns, the original sampling
b. This quantity is comparable in magnitude to those shown in Fig. 6a, except in regions where natural variability reaches its maximum values. It is, therefore, important for the resolution of the sampled model fields to be similar to the resolution expected of the atmospheric measurements. In the present case, the horizontal resolution of the CMAM fields is 3.75°, or roughly 400 km, which is comparable to the horizontal resolutions of the ACE-FTS (ca. 500 km) and MIPAS (ca. 400 km, von Clarmann et al., 2009a) measurements. For this reason we have performed no smoothing of the model fields, although this would be necessary in the case that the model fields were of significantly finer resolution than the measurements. It should also be noted that in order for the present exercise to be applied to nadir-sounding instruments with fine horizontal resolution, model fields with similarly fine resolution would be required.

3.3 Results

3.3.1 MIPAS

Figure 6a-d shows results of the resampling exercise for MIPAS-HR sampling of O3 over the month of March. Figure 6a shows the sample SD divided by the square root of sample size, corresponding to a single-sample estimate of σ. This quantity follows the natural variability of the O3 field, with maximum values of ~0.03 ppmv in the mid-to high latitudes of the middle stratosphere, reflecting the ratio of maximum model variability (~1 ppmv, see Fig. 5) to the square root of the sample size (~800).

The SEM due to measurement error, σ_s/\sqrt{N}, is shown in Fig. 6b. This quantity is comparable in magnitude to that shown in 6a, except in regions where natural variability reaches its maximum values. The SEM estimated through the ensemble resampling technique (Fig. 6c) is notably smaller than σ_s/\sqrt{N} (Fig. 6a) for almost all latitudes and heights. Given the rather uniform
Fig. 7. Pressure latitude sections of zonal mean values of σ_t/\sqrt{N}, the single-sample estimate of the natural variability component of the SEM (first column); σ_t/\sqrt{N}, the random measurement error component of the SEM (second column); the empirically derived SEM_t (third column) and k as defined in text (fourth column) based on ACE-FTS sampling of CMAM March (top) and April (bottom) O_3.

The random measurement errors of ACE-FTS measurements are less than 1 throughout the stratosphere. As a result, k values (Fig. 6d) are less than 1 throughout except in the mid- to high latitudes of both hemispheres, k values are small, reflecting the difference between σ_t/\sqrt{N} and SEM_t. In these regions the classic SEM estimator overestimates the true SEM given the MIPAS-HR sampling, in other words, in this case the classic SEM is a conservative estimate of the true SEM.

Figure 6e–h shows results of the resampling exercise for MIPAS-LR sampling of O_3 over March. Due to its larger sample sizes, σ_t/\sqrt{N} (Fig. 6e) for MIPAS-LR sampling is slightly smaller than that for MIPAS-HR. The SEM due to measurement error, σ_t/\sqrt{N} (Fig. 6f) is slightly smaller than its comparable quantity for the MIPAS-HR sampling due to larger sample sizes and the slightly smaller random error for the LR period retrievals. As for MIPAS-HR sampling, the SEM_t estimated through the ensemble resampling technique for MIPAS-LR sampling (Fig. 6g) is generally less than σ_t/\sqrt{N}, however, the results for MIPAS-LR sampling show a closer agreement between the two quantities than for MIPAS-HR. We interpret this result as a consequence of differences in the sampling patterns of the two MIPAS periods. With sampled latitudes within each bin varying from orbit to orbit, and the closer latitude spacing leading to occasional “double samples”, MIPAS-LR sampling is a closer approximation of random sampling, therefore, it stands to reason that the SEM_t values estimated through the resampling exercise for MIPAS-LR are in closer agreement with σ_t/\sqrt{N} than for MIPAS-HR.

For MIPAS-LR, in locations of significant natural variability there are also a handful of instances of notable local maxima in the SEM_t field, signifying cases where the sample mean is quite sensitive to longitudinal shifts in the sampling pattern. Such values are not reflected in the σ_t/\sqrt{N} field, which leads to k values greater than 1, with the implication that in these few cases, the classic SEM estimator, computed from any one sample set, would underestimate the true SEM.

3.3.2 ACE-FTS

Figure 7 shows results of the ensemble resampling exercise for ACE-FTS sampling of O_3 over month of March and April. With much lower sample sizes than for MIPAS, σ_t/\sqrt{N} (Fig. 7a and e) gives notably larger values than for MIPAS sampling (note different colour scale between Figs. 6 and 7). The random measurement errors of ACE-FTS measurements (Fig. 7b and f) are small compared to the natural variability and, as a result, the component of the SEM due to the random measurement noise is small compared to that due to sampled variability for most of the stratosphere.
For March sampling, the SEM, estimated through the ensemble resampling technique (Fig. 7c) is notably smaller than σ_e/\sqrt{N} for almost all latitudes and heights. As a result, k values (Fig. 7d) are less than one throughout much of the stratosphere. As for MIPAS-LR sampling, many k values are relatively close to one, with 30% of k values between 0.8 and 1.2. There also exist a few isolated instances of k values greater than one, where the classic SEM estimator is seen to underestimate the SEM estimated through the resampling technique.

For April sampling, the SEM estimated through the ensemble resampling technique (Fig. 7g) is generally close in value or slightly less than the classic estimator, leading to k values approximately equal to or less than one, with 36% of k values between 0.8 and 1.2. Instances of $k > 1$, where the classic SEM estimator is seen to underestimate the SEM estimated through the resampling technique, are more prevalent than found for March sampling, with large k values found in the SH high latitudes and SH subtropics.

3.4 Discussion

Ignoring variations in sampling distribution with time, the resampling exercise used to produce the results in Figs. 6 and 7 can be simplified into the following: for each latitude bin, each resampled monthly mean value can be thought of as a weighted mean of the model zonal O$_3$ field, where the weights are defined by the zonal distribution of the monthly sample number. Each ensemble member of the resampling exercise is then produced by randomly shifting the zonal sample distribution pattern with respect to the monthly mean O$_3$ field. Variations in the monthly mean zonal sample means occur based on the relationship between the zonal structures of the O$_3$ field and the sampling distribution — if either is completely uniform, then shifts in the relative zonal structure will have no effect on the sample mean. Furthermore, the degree to which the ensemble of sample means vary will depend on the similarity between the two distributions: maximum variation between ensemble member means should result when the mean O$_3$ field and sample distribution have the same zonal structure.

This mechanism is explored in Fig. 8 for MIPAS-LR sampling. In Fig. 6h, it was seen that k values greater than one were found in the Northern Hemisphere (NH) mid- to high latitudes, meaning that the SEM estimated though the resampling exercise was found to be larger than that estimated through the classical estimator. As an example case of large k values, we examine the 50–55° N latitude bin at 60 hPa, a location of a local maximum in the k values shown in Fig. 6h. Figure 8 shows a histogram of the sample distribution for the MIPAS-LR sampling pattern for the 50–55° N latitude bin separated into 30° longitude bins. At this latitude, the MIPAS-LR sampling pattern has notable zonal structure, with a maximum and minimum in sample density separated by approximately 120°. Also shown is the monthly mean zonal O$_3$ anomaly field for the model latitude of 52° at 60 hPa. The O$_3$ field has been shifted in longitude to produce maximum (solid) and minimum (dashed) values of a weighted mean of the O$_3$ field using the sample distribution as weights.

![Figure 8](image-url) Zonal MIPAS-LR sampling distribution for March within the 50–55° N latitude bin (gray bars). Also shown is the monthly mean zonal O$_3$ anomaly field at 52.4° N, at 20 hPa. The O$_3$ field has been shifted in longitude to produce maximum (solid) and minimum (dashed) values of a weighted mean of the O$_3$ field calculated by using the sample distribution as weights. There is a clear correspondence between the structures of the sampling distribution and the O$_3$ field, and it follows that the sensitivity of the sample mean to the phasing of the sample distribution is related to the similarity between the two distributions.

In this way, the results of the sampling exercise can be seen to be related to the correlations between the zonal structures of the sample distribution and the measured field. The results of the sampling exercise can also be interpreted in terms of correlations between individual measurements. Equation (5) shows the relationship between k and the mean correlation coefficient between all pairs of measurements. k values less than 1 imply a negative mean correlation coefficient. For measured fields with a periodic structure in longitude, sampled with very uniform sampling, we might expect a negative correlation since every measurement is balanced by a corresponding measurement on the other side of the Earth. For non-uniform sampling, e.g., when some measurements are clustered around a certain longitude, then the similarity of the O$_3$ field measured around this cluster leads to an increase in the mean correlation, leading to mean correlation coefficients approaching zero or reaching positive values, and correspondingly k values of 1 or greater, as was found for the MIPAS-LR sampling at certain locations.

Figure 9 shows a similar explanatory plot for ACE-FTS. Maximum k values for ACE-FTS sampling of April O$_3$ were found in the high SH latitudes (Fig. 7h). At these latitudes,
the very large \(k \) values are the result of a highly non-uniform sampling pattern with respect to longitude (as shown in Fig. 4), with most samples clustered within 120° longitude of each other. As a result of this sampling pattern, any non-uniformity in the measured \(O_3 \) field will lead to variations in the monthly mean zonal mean values produced by each realisation of the ensemble resampling, and as a result the SEM estimated by the resampling technique is large. Figure 9 shows the ACE-FTS sampling distribution for the 70–75° S latitude band, as well as the \(O_3 \) anomaly field for this latitude at 10 hPa over the days of ACE-FTS sampling of this latitude. \(O_3 \) anomalies show clear zonally periodic variability at this latitude and height and, as a result, the sample mean is sensitive to the phase shift of the non-uniform sample distribution.

4 Conclusions

The usual way to estimate the standard error of the mean by division of the sample standard deviation by the square root of the sample size (\(\sigma_x / \sqrt{N} \)) is exact only if the elements within the sample are uncorrelated. Satellite measurement datasets, however, are not random samples because measurement locations are the result of factors such as the regular satellite orbit and limitations of measurement frequency. Correlations between sampled points in the atmosphere may impact the measured variability such that the usual SEM estimator is inaccurate. By subsampling model data according to the real sampling patterns of two modern satellite-borne instruments, and incorporating information of the random errors of the instruments, this effect has been assessed for a number of test cases.

In cases where the random measurement error is larger than the natural variability, the classic SEM estimator should provide an accurate estimate of the uncertainty in the mean. However, when natural variability is larger than the random measurement error, the SEM may differ significantly from the classic estimator. Two cases with competing mechanisms have been discovered:

1. \(\text{SEM} < \sigma_x / \sqrt{N} \): this effect is most pronounced when the sample distribution is quite uniform with respect to longitude. Since variations of stratospheric trace gases such as \(O_3 \) typically follow wave like patterns along zonal bands, within a zonal band, uniform sampling leads to negative mean correlation coefficients since each too-low measurement is compensated by a too-high measurement. As a result, the classical SEM estimator, which assumes random sampling and not the highly uniform sampling of the satellite instrument overestimates the true standard error of the mean.

2. \(\text{SEM} > \sigma_x / \sqrt{N} \): this applies particularly to cases where the zonal sampling distribution is non-uniform. If the non-uniformity of the sampling pattern is of similar zonal structure to variations in the measured field, then the measured zonal mean is sensitive to arbitrary phase shifts between the sampling pattern and the measured field. As a result, the SEM is larger than that estimated by the classic estimator. In this case, the similar zonal structure of the sampling distribution and the measured field can be understood to result in positive mean correlation between samples, which we suggest is an equivalent explanation for the fact that the classical SEM underestimates the true SEM.

For satellite instruments with high sample density, such as MIPAS, isolated instances where the SEM calculated through the classic estimator is a factor of 2 too small may have very little practical importance. With such large sample sizes, the standard error of climatological means is practically so small that any differences between two such instruments is very likely dominated by systematic errors rather than random errors. However, for instruments with much smaller sample sizes, such as the solar occultation instrument ACE-FTS, proper interpretation of inter-instrument or instrument-model comparisons may rely more heavily on the calculation of an appropriate SEM. In such cases, the results of this study suggest that in order for the classic SEM estimator to be used, a climatology producer should be encouraged to require some degree of zonal uniformity in the sample distribution of measurements used to calculate a zonal mean. In fact, we find that the classic SEM may be still valid (or even a conservative estimate) for quite small sample sizes (e.g., under 10), as long as the zonal sample distribution is relatively uniform.
Acknowledgements. The authors thank the instrument teams of MIPAS and ACE-FTS for providing sample patterns for use in this study, as well as Andreas I. Jonsson and Theodore G. Shepherd for providing the CMAM chemical fields. The Atmospheric Chemistry Experiment (ACE), also known as SCISAT-1, is a Canadian-led mission mainly supported by the Canadian Space Agency (CSA) and the Natural Sciences and Engineering Research Council (NSERC) of Canada. The CMAM is supported by the Canadian Foundation for Climate and Atmospheric Sciences and the CSA. M. T. acknowledges partial support through the EU project SHIVA (grant number 226224). This work was motivated by discussions within the SPARC Data initiative: the authors thank co-leaders Michaela Heglin and Susann Tegtmeier, and all members of the SPARC DI team. Also thanks to Kaley Walker for helpful comments on a draft manuscript.

The service charges for this open access publication have been covered by a Research Centre of the Helmholtz Association.

Edited by: H. Worden

References

