Isotopic constraints on the pre-industrial oceanic nitrogen budget.

Somes, Christopher J. , Oschlies, Andreas and Schmittner, A. (2013) Isotopic constraints on the pre-industrial oceanic nitrogen budget. Open Access Biogeosciences (BG), 10 (9). pp. 5889-5910. DOI 10.5194/bg-10-5889-2013.

[img]
Preview
Text
bg-10-5889-2013.pdf - Published Version
Available under License Creative Commons Attribution.

Download (7Mb) | Preview

Supplementary data:

Abstract

The size of the bio-available (i.e. "fixed") nitrogen inventory in the ocean influences global marine productivity and the biological carbon pump. Despite its importance, the pre-industrial rates for the major source and sink terms of the oceanic fixed nitrogen budget, N2 fixation and denitrification, respectively, are not well known. However, these processes leave distinguishable imprints on the ratio of stable nitrogen isotopes, δ15N, which can therefore help to infer their patterns and rates. Here we use δ15N observations from the water column and a new database of seafloor measurements to constrain rates of N2 fixation and denitrification predicted by a global three-dimensional Model of Ocean Biogeochemistry and Isotopes (MOBI). Sensitivity experiments were performed to quantify uncertainties associated with the isotope effect of denitrification in the water column and sediments. They show that the level of nitrate utilization in suboxic zones, that is the balance between nitrate consumption by denitrification and nitrate replenishment by mixing (dilution effect), significantly affects the isotope effect of water column denitrification and thus global mean δ15NO3−. Experiments with lower levels of nitrate utilization within the suboxic zone (i.e. higher residual water column nitrate concentrations, ranging from 20–32 μM) require higher ratios of benthic to water column denitrification (BD:WCD = 0.75–1.4, respectively), to satisfy the global mean NO3− and δ15NO3− constraints in the modern ocean. This suggests that nitrate utilization in suboxic zones play an important role in global nitrogen isotope cycling. Increasing the net fractionation factor for benthic denitrification (ϵBD = 0–4‰) requires even higher ratios of benthic to water column denitrification (BD:WCD = 1.4–3.5, respectively). The model experiments that best reproduce observed seafloor δ15N support the middle to high-end estimates for the net fractionation factor of benthic denitrification (ϵBD = 2–4‰). Assuming a balanced fixed nitrogen budget, we estimate that pre-industrial rates of N2 fixation, water column denitrification, and benthic denitrification were approximately 195–345, 65–75, and 130–270 Tg N yr−1, respectively. Although uncertainties still exist, these results suggest that previous estimates of N2 fixation have been significantly underestimated and the residence time for oceanic fixed nitrogen is between ~ 1500–3000 yr.

Document Type: Article
Additional Information: WOS:000324460000009
Keywords: Biogeochemistry; stable isotopes; aquatic modelling
Research affiliation: OceanRep > SFB 754
OceanRep > SFB 754 > B1
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-BM Biogeochemical Modeling
Refereed: Yes
Open Access Journal?: Yes
DOI etc.: 10.5194/bg-10-5889-2013
ISSN: 1726-4170
Projects: SFB754, Future Ocean
Date Deposited: 07 May 2013 12:22
Last Modified: 23 Sep 2019 20:16
URI: http://oceanrep.geomar.de/id/eprint/21209

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...