Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr.

Riethdorf, Jan-Rainer, Nürnberg, Dirk , Max, L., Tiedemann, R., Gorbarenko, S. A. and Malakhov, M. I. (2013) Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr. Open Access Climate of the Past, 9 (3). pp. 1345-1373. DOI 10.5194/cp-9-1345-2013.

[thumbnail of cp-9-1345-2013.pdf]
Preview
Text
cp-9-1345-2013.pdf - Published Version
Available under License Creative Commons Attribution.

Download (12MB) | Preview

Supplementary data:

Abstract

We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past similar to 180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.

Document Type: Article
Additional Information: WOS:000322859700023
Keywords: SUB-ARCTIC PACIFIC; INTERMEDIATE-WATER VENTILATION; SANTA-BARBARA BASIN; LAST GLACIAL TERMINATION; OXYGEN MINIMUM ZONE; NORTH PACIFIC; ORGANIC-MATTER; NORTHWESTERN PACIFIC; LATE QUATERNARY; SOUTHERN-OCEAN
Research affiliation: OceanRep > The Future Ocean - Cluster of Excellence
HGF-AWI
OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-P-OZ Paleo-Oceanography
Refereed: Yes
Open Access Journal?: Yes
Publisher: Copernicus Publications (EGU)
Related URLs:
Projects: KALMAR, Future Ocean
Expeditions/Models/Experiments:
Date Deposited: 17 Sep 2013 12:15
Last Modified: 20 Oct 2020 13:23
URI: https://oceanrep.geomar.de/id/eprint/21991

Actions (login required)

View Item View Item