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Abstract 

Mg/Ca, Sr/Ca and stable isotope measurements have been performed on tests from the 

planktonic foraminifers Globigerinoides ruber (white), Globigerina bulloides, and 

Neogloboquadrina pachyderma (right coiling) in samples from ODP site 977A in the 

Alboran Sea (Western Mediterranean). The evolution of different water masses between 

250 and 150 ka is described. Warm substages were characterized by strong seasonality 

and thermal stratification of the water column. By contrast, less pronounced seasonality 

and basin stratification seem to prevail during cold substages. Several periods of 

stratification due to the low salinity of the upper water mass occurred during the 

formation of organic-rich layers and also during a possible Heinrich-like event at 220 

ka. The three foraminifer species studied show a common and large shell Sr/Ca 

variability in short timescales, suggesting changes in the global ocean Sr/Ca ratio as one 

of the main causes of variations in shell composition. 

 

Keywords: Mg/Ca paleothermometry, stable isotopes, Sr/Ca, marine isotope stage 7, 

Alboran Sea. 



1. Introduction  

Mg/Ca paleothermometry on planktonic foraminifer shells is a relatively recent proxy 

for reconstructing past sea surface temperatures (SST). The uptake of Mg2+ into the 

foraminifer shell is influenced by the temperature of the seawater in which the 

foraminifer lives. The Mg/Ca ratio increases with temperature. The temperature 

sensitivity of the foraminifer Mg/Ca ratio was first reported by Chave [1954] after X-

ray diffraction studies. In the past decade, Mg/Ca paleothermometry has been developed 

and used in many paleoceanographic studies [e.g. Nürnberg et al., 1996; Lea et al., 

1999; Elderfield and Ganssen, 2000]. This method has an important advantage in that if 

the Mg/Ca ratio and stable isotopes are measured in the same calcite test, then the 

seawater δ18O can be reconstructed over time, guaranteeing a common source of the 

signal [e. g. Mashiotta et al., 1999; Elderfield and Ganssen, 2000]. Thus, the errors for 

seawater δ18O reconstructions can be minimized [Barker et al., 2005]. Moreover, this 

proxy permits study of the evolution of different water masses on the basis of the 

species analysed [e. g., Elderfield and Ganssen, 2000; Martin et al., 2002]. One of the 

aims of the present work is to analyse the evolution of different water masses in the 

Alboran Sea between 250 and 160 ka, based on the Mg/Ca ratio and stable isotope 

records, especially at times of striking events such as the formation of organic-rich 

layers (ORL) or possible Heinrich-like Events (HE). This study also pretends to obtain 

some conclusions about Sr/Ca controls on foraminifer shells. 

 

Several studies based on alkenone and pollen records have been published about 

paleotemperature estimates during marine isotopic stages 6 and 7 in the Iberian Margin 

[Martrat et al., 2004; Martrat et al., 2007; Roucoux et al., 2006; Desprat et al., 2006]. 



Here we reconstruct sea surface temperatures in the Alboran Sea between 250 and 160 

ka based on Mg/Ca paleothermometry.  

 

2. Regional setting  

The Mediterranean Sea is a semi-enclosed evaporative basin governed by its connection 

with the Atlantic Ocean through the Strait of Gibraltar. The Alboran Sea is the 

westernmost sub-basin of the Western Mediterranean and its surface circulation shows 

two anticyclonic gyres that remain stable over time [Heburn and La Violette, 1990] 

(figure 1). A two-layered flow develops at the Strait of Gibraltar: less saline surface 

waters enter the Alboran Sea from the Atlantic and more saline and cooler 

Mediterranean waters flow out [Wüst, 1961; Béthoux, 1979]. The Atlantic waters, 

which occupy the uppermost 200 m, are gradually modified along their flow eastwards 

due to vertical water mixing and heat interchange with the atmosphere [Pierre, 1999]. 

The Mediterranean outflow is mainly formed by the Levantine Intermediate Water and 

the Tyrrhenian Dense Water [Millot, 1999], which flows westwards in the Alboran 

basin at depths between 200 and 1000 m.  Below these water masses, the Western 

Mediterranean Deep Water also proceeds to the Strait of Gibraltar. This water mass is 

formed in the Gulf of Lions and constitutes 10 % of the Mediterranean Outflow [Millot, 

1999]. 

 

In the past, the climate in the Mediterranean Sea has been strongly controlled by the 

atmospheric circulation at higher latitudes [e.g., Rohling et al., 1998; Sierro et al., 2005; 

Frigola et al., 2007], demonstrating the rapid teleconnection between high- and mid-

latitudes. In particular, the migration of pressure systems in the Northern Hemisphere 



over time has also conditioned warming and cooling periods in the Alboran basin, both 

at millennial and astronomical time scales [Cacho et al., 1999; Moreno et al., 2005]  

 

3. Material and Methods 

Around 40 individuals of the planktonic foraminifer species Neogloboquadrina 

pachyderma (right coiling) and Globigerinoides ruber (white) were picked from the 

250-300 μm fraction of sediment samples in order to perform paired Mg/Ca and stable 

isotope analyses. By this method, we cannot avoid picking different genotypes of the 

same species but this is an inevitable error (less than 2%) in this kind of studies  

[Darling et al., 2003]. Twenty individuals of Globigerina bulloides were picked for 

Mg/Ca analyses, since the stable isotope analyses were already available [Martrat et al., 

2004]. The Globigerinoides ruber record is discontinuous because in many samples this 

species was very scarce and hence, there were insufficient individuals to perform the 

analyses. All samples were ultrasonically cleaned with hydrogen peroxide and 

methanol. Specimens of Globigerina bulloides, Globigerinoides ruber and 

Neogloboquadrina pachyderma were crushed between clean glass plates and 

homogenized, and then split into two aliquots, one for Mg/Ca and the other for stable 

isotope measurements. This ensured that both analyses would be carried out on the 

same samples and eliminated possible discrepancies due to the measurement of different 

individuals in each analysis. When the samples were too small to be split they were 

used for either Mg/Ca or δ18O measurements only. We applied the Mg/Ca cleaning 

protocol after Barker et al. [2003], which consisted of:  1) repeated clay removal with 

ultra-pure de-ionised water; 2) removal of organic matter with 250 ml of alkali-buffered 

1% H2O2 solution (kept in water at 90ºC for 10 minutes and then rinsed); 3) weak acid 

leaching using 250 ml of 0.001M HNO3 followed by a rinse; 4) immediately prior to the 



analysis, dissolution in 0.075M HNO3, centrifugation, and transfer to a clean vial. The 

sample solutions were conditioned to a [Ca2+] concentration of ca. 60 ppm, and intensity 

calibrations were carried out following de Villiers et al. [2002] in order to limit the 

“matrix effect”. Minor elements analyses were carried out on an ICP-AES device 

(Varian Vista AX CCD simultaneous) at the University of Cambridge, as described by 

de Villiers et al. [2002]. The standards of Mg/Ca ratio=5.130 mmol/mol and Sr/Ca 

ratio=2,088 mmol/mol analysed in parallel with the samples were reproducible in the 

long-term, with a relative standard deviation (RSD) better than 0.23% (±0.012 

mmol/mol) and 0.19% (±0.004 mmol/mol), respectively. The blank contamination 

effect was very small (less than 1.0 ppb Mg) despite this it was removed from the 

temperature estimates.  

 

Stable isotope analyses in Globigerinoides ruber and Neogloboquadrina pachyderma 

were carried out at the isotope laboratory at IFM-GEOMAR with a CARBO KIEL 

automated carbonate preparation device linked on-line to a FINNIGAN MAT 252 mass 

spectrometer. External reproducibility was 0.06 ‰ for δ18O (1-sigma values), as 

calculated from replicate analyses of the internal carbonate standard (Solnhofen 

Limestone). The isotope data are referred to the Viena PeeDee Belemnite (VPDB) scale 

[Coplen, 1996]. Most foraminifer species secrete their calcite test out of isotopic 

equilibrium for δ18O and δ13C; nonetheless, the δ18O disequilibrium offset can be 

considered to remain constant over time for each species. Therefore, the relative trends 

in isotopic records are independent of such systematic disequilibria, which only affect 

the absolute values. No correction was made for disequilibrium effects in this study 

since no values based on Mediterranean specimens are available and it is likely that 

certain endemic genotypes with different disequilibrium effects would have developed 



in the Mediterranean Sea due to the quasi-isolation over 5 million years [Rohling et al., 

2004]. Considering this uncertainty, we considered it more appropriate to work with the 

measured values. 

 

The water δ18O was obtained from the equation of Shackleton [1974], subtracting the 

ice-volume [Siddall et al., 2003] and temperature effect from the  δ18O composition, 

where SST estimates were based on the Mg/Ca ratios measured in each species. Sea 

surface salinity estimates were calculated using the empiric water δ18O-salinity 

relationship for the Mediterranean Sea given by Pierre [1999].  

 

We used the age model established by Martrat et al. [2004], based on the correlation 

between the SPECMAP stacked curve [Martinson et al., 1987] and the Globigerina 

bulloides δ18O curve from this core (ODP site 977A). According to this age model, the 

interval studied here spans between 245 and 160 ka, and the averaged sample resolution 

is 720 years. 

 

The fragmentation index was calculated as the “number of foraminifer shell 

fragments/number of foraminifer shell fragments + number of complete foraminifer 

shells”, considering the >150μm size-fraction.  

 

4. Species ecology  

Globigerinoides ruber (white) is a spinous symbiont-bearing species that proliferates in 

warm, usually stratified, oligotrophic waters [Bé, 1977]. This species inhabits shallow 

waters (first 50 m of water depth). In the Alboran Sea, it is more abundant at the end of 



the summer [Barcena et al., 2004] at around 23 ºC [García-Gorriz and Carr, 2001], 

although its abundance is always low [Pujol and Vergnaud-Grazzini, 1995]. 

 

Globigerina bulloides is a spinous species that lacks symbionts. This species is 

characteristic of upwelling situations, responding to high fertility periods. It is more 

abundant within the first 50-100 m, although it can occupy lower levels since it is not 

restricted to the photic zone [Hemleben et al., 1989].  In the Alboran Sea, Globigerina 

bulloides proliferates below the thermocline in spring, when it starts to form, or in 

summer, when a strong picnocline is established [Pujol and Vergnaud-Grazzini, 1995]. 

This species may also show a strong unique bloom in May however [Hernández-

Almeida et al., 2005].    

 

Neogloboquadrina pachyderma (right coiling) is a non-spinose planktonic foraminifer 

that usually lives in subpolar-tropical regions [Bé, 1977]. It proliferates when the water 

temperature below the thermocline is lower than 12 ºC. It is considered a deep-water 

species (below 100 m), although during its reproduction and the juvenile stadials it lives 

in the first 100 m [Pujol and Vergnaud-Grazzini, 1995]. It develops especially within 

the Deep Chlorophyll Maximum (DCM), which appears at the base of the euphotic zone 

when the upper part of the water column is well stratified. In the modern Alboran Sea, 

this species does not exist, but in the Gulf of Lions it is quite abundant in winter due to 

the very low water temperature in that area; in summer it only develops at great depth. 

In the rest of the Mediterranean Sea, Neogloboquadrina pachyderma only appears 

during winter, and at great depths. This kind of behavior suggests that water 

temperature is a limiting factor to this species, at least in the Mediterranean Sea [Pujol 

and Vergnaud-Grazzini, 1995].  



 

5. Results 

5.1 Shell dissolution and contamination 

Mg-rich calcite is more prone to dissolution [Brown and Elderfield, 1996] and hence 

samples affected by dissolution present lower Mg/Ca ratios. In this case, a negative 

correlation between the Mg/Ca ratio and fragmentation index is expected, and when this 

occurs, paleotemperature calculations based on this ratio are underestimated. In core 

ODP site 977A, the samples are not subjected to significant dissolution since no 

correlation was observed between the Mg/Ca ratio and the fragmentation index in the 

three species selected (figure 2).   

 

To evaluate possible persistent contamination in the samples after the cleaning 

procedure, we compared the Mg/Ca ratios with the Al/Ca, Fe/Ca and Mn/Ca values. Al, 

Fe and Mn indicate the presence of clays and/or autigenic minerals, which usually 

include Mg in their composition. This contribution would increase the calcite Mg/Ca 

ratio of the samples, introducing an error in the final paleotemperature estimates. In our 

measurements, no correlation was seen between the Mg/Ca and the Al/Ca, Fe/Ca and 

Mn/Ca ratios (figure 3), meaning that contamination did not control the variations in the 

Mg/Ca ratio in this core.  

 

5.2 Calibration equations 

For the Alboran Sea, there are very few core tops available for obtaining a good 

regional Mg/Ca-temperature calibration for the three species selected here. Accordingly, 

we had to use previous equations developed in other parts of the world. We decided to 

use the equation of von Langen et al. [2005] for Neogloboquadrina pachyderma (r.c.), 



since this expression was obtained from living cultures of this species between 9 and 19 

ºC, comparing the results with those of sediment traps from the Santa Barbara Strait; 

this temperature range is fairly similar to that of intermediate waters in the Alboran Sea. 

For Globigerina bulloides we used the Elderfield and Ganssen [2000] specific equation, 

which is based on measurements in a set of core tops from the Atlantic Ocean between 

32 and 62ºN. We consider this equation appropriate for the Alboran Sea since this basin 

has been strongly affected by North Atlantic waters throughout the late Pleistocene 

[Cacho et al., 1999; Martrat et al., 2004]. The equation of Anand et al. [2003] (constant 

A assumed, 250-350 μm) was used for Globigerinoides ruber (white). This calibration 

was performed on six-year sediment traps from the Sargasso Sea, and the temperature 

range in that area (18 to 26 ºC) is not very different from that of summer surface waters 

in the Alboran Sea.  

 

The error associated with temperatures obtained by these calibration equations is driven 

by uncertainties on the Mg/Ca measurements and the calibration equations, which 

causes an error of ±0.2-0.7 ºC (Elderfield and Ganssen, 2000; Anand et al., 2003; von 

Langen et al., 2005] exceeding the analytical measurement precision. But in this study 

we have to consider another uncertainty derived from the utilization of an equation 

developed in another geographical area where the species considered might have a 

different geochemical response to temperature than the Alboran Sea species. 

Unfortunately this error cannot be calculated and therefore, we assume that the error of 

the final temperature estimates is ±1.5 ºC (twice the calibration equation maximal 

error). 

 

5.3 Mg/Ca ratios and paleotemperature estimates 



The results on Mg/Ca ratios differ considerably, depending on the species analysed 

(figure 4). In Globigerinoides ruber, the most superficial species, this ratio ranges 

between 2 and 4.5 mmol/mol during warm substages, which is the widest range of the 

three species studied. The Mg/Ca ratio measured in Globigerina bulloides ranges 

between 1.8 and 4 mmol/mol. By contrast, the Mg/Ca ratio in Neogloboquadrina 

pachyderma (r.c.) is lower, and ranges between 1.3 and 2.4 mmol/mol. Therefore, the 

Mg/Ca ratios range apparently became narrower the deeper the species lived. Moreover 

the Mg/Ca ratio patterns are different from one species to the other. 

  

The Globigerinoides ruber calcification temperature ranges between 25.3 ºC at the 

beginning of warm substage 7.3, and 17.4 ºC at the end of 7.4 (figure 5a). Although this 

curve is very discontinuous, profound variability is observed between substages. The 

temperature amplitude recorded by this species is large, even though its record is 

reduced to warm interglacial periods. In substages 7.5 and 7.3, the warmest period is 

observed at the beginning, and throughout the substages a gradual cooling took place. In 

substage 7.1, the warmest values are recorded in the middle and at the very end of the 

substage. 

 

The Globigerina bulloides record shows very subtle variations in the period studied 

(figure 5a); although stage 6, as well as substage 7.4, is clearly identified. However, the 

cold substage 7.2 cannot be identified in this record since the averaged calcification 

temperature during this period was 17 ºC, very similar to the mean values observed for 

substages 7.1 and 7.3. During warm substages the temperature record seems to have 

been very stable. The highest value reaches 20.2 ºC, coinciding with the highest 

temperature recorded for Globigerinoides ruber at the beginning of substage 7.3, and 



the lowest temperature is 12 ºC, recorded at around 172 ka (stage 6); however, the 

lowest temperature reached during stage 7 is 13.3 ºC, at 221 ka (second half of substage 

7.4). During warm substages 7.5 and 7.3, the calcification temperature of both species 

(Globigerina bulloides and Globigerinoides ruber) was slightly higher at the beginning 

of the intervals. The paleotemperature estimates for the three warm substages (7.5, 7.3 

and 7.1) based on this two species follows the same pattern as the alkenone-derived sea 

surface temperatures for the same core [Martrat et al., 2004]. 

 

The Neogloboquadrina pachyderma calcification temperature follows a different trend, 

since no clear variability between substages is observed (figure 5a). However, 

millennial changes are quite frequent. The highest value is 15.34 ºC, recorded at the 

middle of substage 7.3, whereas the lowest one is 9.31 ºC at 223 ka. Compared with the 

other species studied, Neogloboquadrina pachyderma shows great variability within the 

warm substages.  

 

5.4 Stable isotopes and salinity 

The lightest oxygen isotope values are recorded by the surface species Globigerinoides 

ruber (figure 5b), whereas the other two species show very similar values. The heaviest 

values are observed close to the cold substages, whereas the lightest appear at the 

beginning of substages 7.5 and 7.3, in the middle of 7.1, and also in substage 7.4. The 

isotopic pattern shown by the three species is asymmetric between substages 7.5 and 

7.2, since the transitions from light to heavy values are more gradual than the transitions 

from heavy to light values. However within substage 7.1 the isotopic record is 

symmetric. The lightest oxygen isotope values from the period studied are recorded at 

220 ka (-0.82 ‰), during the cold substage 7.4. Between 190 and 160 ka, the 



Globigerina bulloides δ18O is the only record available, and it reveals millennial 

changes between 2.73 and 0.67 ‰. A special period with very light oxygen isotope 

values is observed between 165 and 175 ka. 

 

The variations in δ18Ow recorded by the three species are very similar (figure 5c), 

showing the same asymmetry between 245 and 200 ka as the δ18O record. Also the 

abrupt decrease at 175 ka followed by a gradual recovery to heavier values is observed 

in the δ18Ow values.  

 

The carbon isotope records of the three species are fairly parallel over time (figure 5d). 

The heaviest values are shown by Globigerinoides ruber, ranging between 0.18 and 

0.96 ‰. This is followed by Neogloboquadrina pachyderma δ13C, with values between 

-0.77 and +0.77 ‰. The lightest carbon isotope values are recorded by Globigerina 

bulloides (from -2 to 0 ‰). The general trend consists of a gradual increase from the 

beginning of substage 7.5 to the beginning of substage 7.4, a pronounced decrease 

during the second half of 7.4, then another gradual increase until the end of substage 7.2 

and a final decreasing trend during substage 7.1 which finishes with heavier values to 

the very end of substage 7.1. During stage 6 the Globigerina bulloides record shows 

decreasing δ13C values until around 175 ka, where δ13C stabilizes.  

 

Estimates of past water salinity derived from paired δ18O and Mg/Ca analyses infer 

considerable uncertainties related to the methods [Rohling, 1999; Rohling et al., 2007]. 

However, they can be used in relative terms, interpreting increasing and decreasing 

trends. As it is observed in figure 5c, the most saline values coincide with the heaviest 

isotope records.  



 

6. Discussion 

6.1 Paleotemperature estimates 

Each species records the temperature variations of the water mass in which it thrives. 

Hence, the warmest water mass is the one in which Globigerinoides ruber (white) lives, 

and it corresponds to the summer mixed layer [Pujol and Vergnaud-Grazzini, 1995; 

Rohling et al., 2004]. Our data suggest that Alboran Sea surface waters may have been 

occasionally warmer at the beginning of substages 7.5 and 7.3 than at present (red line 

in figure 5a). The amplitude of the temperature changes recorded by Globigerinoides 

ruber is very broad, up to 8 ºC from the warmest to the coldest values, although it is 

likely to be even broader, since this species was absent during most of the cold periods. 

This broad amplitude is due to the fact that the summer mixed layer is very thin, and 

hence any runoff event or heating anomaly would have great impact as compared with 

other thicker water masses. The maxima of Globigerinoides ruber calcification 

temperatures are located just after the Northern Hemisphere summer insolation maxima 

with a lag of 1-4 ka, coinciding with the interglacial maxima. Moreover, the 

Globigerinoides ruber SST record is roughly parallel to the sea-level and hence ice-

volume curve [Shackleton, 2000]. This pattern suggests that a greater ice-volume at 

northern latitudes during lowstand periods had a significant influence on Mediterranean 

summer surface water temperatures. A possible mechanism are outbursts colder winds 

to the Mediterranean region in late spring and early summer as it has often been 

observed today.  

 

Globigerina bulloides shows much less variability than Globigerinoides ruber, although 

the general trends are similar. The water mass recorded by Globigerina bulloides is 



assumed to be a mixture between the late spring/early summer surface layer and deeper 

waters upwelled during those months at 50-100 water-depth [Pujol and Vergnaud-

Grazzini, 1995; Barcena et al., 2004; Hernández-Almeida et al., 2005]. In this record, 

the most remarkable feature is the narrow temperature amplitude: around 5 ºC of 

difference between the coldest and the warmest samples within stage 7. However, 

several substages in stage 7 are not well defined (7.3, 7.2 and 7.1), probably because 

Globigerina bulloides is a stenotopic species [Skinner and Elderfield, 2005], which 

means greater habitat selectivity. Another hypothesis for this stability could be the 

displacement of upwelling situations to warmer months during substage 7.2.  

 

The large gradient between the temperatures recorded by Globigerinoides ruber and 

Globigerina bulloides can be related to seasonality. The highest gradients occurred 

when seasonality was stronger, just after the Northern Hemisphere summer insolation 

maxima. This temperature gradient gradually diminished until the end of the warm 

substages, when it reached its minimum values; that is, when sea surface temperatures 

in May and at the end of the summer were very similar. During periods with enhanced 

seasonality, a warmer summer mixed layer could have resulted in strong stratification 

over a prolonged period of time throughout the year, whereas a colder summer layer 

during weaker seasonality periods would have resulted in a less pronounced 

stratification for a short period of the year.  

  

Neogloboquadrina pachyderma (right coiling) inhabits the lower surface layer (between 

50 and 150 m), although it can be influenced by intermediate Mediterranean waters 

[Pujol and Vergnaud-Grazzini, 1995]. Accordingly, it reflects the coldest temperatures. 

Although Mediterranean waters are seasonally homogeneous in terms of temperature 



below 150 m of water-depth, at millennial scale their temperature may change by more 

than 5 ºC between stadials and interstadials [Cacho et al., 2006]. This millennial 

variability may reflect winter climate variations in the area of intermediate water 

formation in the Eastern Mediterranean as suggested Rohling et al. [2002] for the 

Holocene or it could be the imprint of a possible secondary unknown factor that could 

be controlling Mg/Ca ratio in this species apart from the calcification temperature.    

 

6.2 Isotopic characterization 

The differences observed in the Globigerinoides ruber δ18O record with respect to the 

other species are due to the thermal effect. When this component is subtracted from the 

δ18O values, the resulting Globigerinoides ruber δ18Ow resembles that of the other two 

species (figure 5c). This pattern supports the interpretation that the Globigerinoides 

ruber calcification temperature based on the shell Mg/Ca ratio reflects the evolution of 

the summer mixed layer along the time studied. We consider that the differences 

between the absolute δ18Ow values obtained from the different species analysed are 

mainly due to their specific deviations from equilibrium. However, the unusual fresh 

signal recorded by Neogloboquadrina pachyderma could be related with the calibration 

equation applied to this species, since the lower limit of the temperature range from the 

living cultures (9-19 ºC) used for the calibration was a pair of degrees lower than the 

lowest temperatures ever recorded in the Alboran Sea at 150 m of water depth. In 

addition, salinity variations are parallel to those seen for the δ18Ow record (inverted 

salinity scale), and the absolute values are mainly influenced by the mentioned specific 

deviations from equilibrium.  

 



The δ18Ow values and the salinity of Mediterranean waters would have also been 

affected by changes in sea level and the residence time of water masses in the 

Mediterranean Sea. Residence time is determined by the rate of water exchange through 

the Strait of Gibraltar, controlled by global sea level changes (figure 5e). Longer 

residence times during lowstands would have enhanced both δ18Ow and salinity, since 

when the sea level was at its minimum water exchange through the Strait of Gibraltar 

was reduced, and consequently Mediterranean waters were subjected to a negative 

hydrological balance for a longer period of time, thus effecting higher salinities and 

hence, heavier δ18Ow values. By contrast, during highstands the salinity and oxygen 

isotope values of Mediterranean waters decreased as Atlantic-Mediterranean water 

exchange increased.  

 

The lightest oxygen isotope values were reached during special events, such as during 

the deposition of the organic-rich layers defined at around 245 and 195 ka, during the 

warm substages 7.5 and 7.1 [Comas et al., 1996]. A source of light-oxygen isotope 

water is needed to explain the low δ18Ow values observed within these layers, which 

seem to be equivalent to the Eastern Mediterranean sapropels S7 and S9 [Capotondi and 

Vigliotti, 1999]. The input of ice-melting waters to the basin or large river discharges 

during wetter periods may have been responsible for these negative oxygen isotope 

anomalies. The geochemical data suggest that river discharges increased during these 

periods [Gonzalez-Mora et al. submitted]. As expected, this anomaly is more 

pronounced in Globigerinoides ruber (w): the most superficial species. The very low 

salinities recorded during these events suggest the occurrence of salinity stratification 

during these organic-rich layers. It is remarkable that in substage 7.5, the thermal 

stratification recorded by the Globigerinoides ruber temperature maximum peak does 



not coincide with the salinity stratification prevailing during the formation of ORL11 

and 12. However, in substage 7.1, thermal stratification does coincide with the salinity 

minimum. In light of the amplitude of the δ18Ow decrease, it seems that the most 

pronounced organic-rich layers are ORL11 and 12 (at around 244 ka), whereas the 

ORL9 was less important.  

 

Centered at around 220 ka, decreases in salinity and δ18Ow are also found, but these 

decreases do not coincide with any previously defined organic-rich layer. Unlike what 

was observed in the ORLs, this isotope anomaly is accompanied by very low sea 

surface temperatures, together with slight increases in C37:4 [Martrat et al., 2004] and 

Neogloboquadrina pachyderma (left coiling) [Gonzalez-Mora et al. submitted], and 

may be considered a Heinrich-like event [Gonzalez-Mora et al. submitted]. According 

to previous findings [Cacho et al., 1999; Sierro et al., 2005], these very low sea surface 

salinities and temperatures seem to be related to the input of iceberg meltwaters from 

the North Atlantic into the Mediterranean Sea. Globigerinoides ruber shows the most 

pronounced decrease in δ18Ow values, since the most superficial waters would have been 

more affected by such meltwaters. However, these changes are also seen in 

Neogloboquadrina pachyderma (r.c), which suggests that these isotopic variations 

reached at least the first 150 m of water-depth. During this event, stratification of the 

basin probably occurred due to the existence of upper water masses with very low 

salinity.  

 

The fourth prominent δ18Ow minimum appears at around 175 ka, close in time to the 

Northern Hemisphere summer insolation maximum. This event is also characterized by 

low sea surface temperature, and oxygen isotope waters, spanning between 175 and 165 



ka, it is not recorded in cores from the Atlantic Ocean. However, these significant light-

oxygen isotope values have been observed in other parts of the Mediterranean region, 

suggesting an internal source [Sierro et al. submitted]. Furthermore, this period is 

related to the formation of sapropel 6 in the Eastern Mediterranean, in which rainfall 

was very high [Ayalon et al., 2002; Bard et al., 2002], and the geochemical data (Si, Al, 

and Ca) from the same core in the Alboran Sea suggest increasing river discharge 

during this period. However, this δ18Ow decrease might be also partially caused by the 

sea level increase that took place during the same interval, which would favour the 

Atlantic-Mediterranean water exchange.  

 

The δ13C values recorded by the three species follow a very similar pattern (figure 5d). 

The absolute differences between species are partially due to their vital effects and the 

isotopic disequilibria, and also, due to the ecological preferences of each species. The 

heaviest values are recorded by Globigerinoides ruber (w) because this species lives in 

the stratified summer mixed layer, especially during autumn, when most of nutrients 

have been consumed, and therefore water 12C has decreased. On the other hand, 

Neogloboquadrina pachyderma (r.c.) and Globigerina bulloides are influenced by the 

intermediate water signal. Neogloboquadrina pachyderma (r.c.) especially develops in 

winter, when water mixing is enhanced, and Globigerina bulloides colonizes the areas 

in which intermediate and deeper waters upwell. In the Mediterranean Sea, intermediate 

waters are depleted in δ13C compared to surface waters (Pierre, 1999), and this signal is 

reproduced by the Neogloboquadrina pachyderma (r.c.) and Globigerina bulloides δ13C 

records. However, there is a significant offset between both species due to the important 

isotopic disequilibrium inherent to Globigerina bulloides, which causes very light shell 

δ13C values compared to the water δ13C signal (F.J. Sierro, personal communication). 



 

The common pattern observed in the three species suggests that the entire 

Mediterranean basin had quasi-homogeneous δ13C values for all times studied. The 

general increasing carbon isotope trend from the beginning of the warm substages to the 

end of the cold ones observed in Neogloboquadrina pachyderma (r.c.) and Globigerina 

bulloides reproduces the intermediate-water basin-wide δ13C trends over time. Intense 

mixing in the areas of deep water formation, especially in the Levantine basin, where 

most of the intermediate water is formed, can result in heavier carbon isotope values 

throughout the basin. However, the Globigerinoides ruber (w) fluctuations during MIS7 

are partially affected by the intermediate water signal due to the upwelling of this water 

mass during several months around the year, but those fluctuations are also responding 

to changes in the rate of nutrient utilization throughout time. 

  

Regarding the formation of organic-rich layers, there is no evidence in the carbon 

isotope data of changes in the nutrient availability/utilization ratio, implying the absence 

of significant variations in surface productivity during those periods. Moreover, no 

changes in the intermediate-water basin-wide δ13C are observed according to the 

Neogloboquadrina pachyderma (r.c.) and Globigerina bulloides records. During the 

possible Heinrich-like event at 220 ka, a basin-wide δ13C significant decrease seems to 

have occurred. This could be related to weaker mixing in the areas of deep water 

formation. 

 

6.3 Sr/Ca 

It has been suggested that dissolution lowers the shell Sr/Ca ratio in some planktonic 

foraminifer species [Brown and Elderfield, 1996]. The comparison of the fragmentation 



index and the shell Sr/Ca ratio of the three species shows that dissolution was not the 

main factor controlling the major downcore Sr variations in shells. However, some of 

the high-frequency changes could have been caused by differential dissolution. 

 

Several experiments with living foraminifers have shown that environmental parameters 

affect shell Sr incorporation [Bender et al., 1975; Carpenter and Lohmann, 1992]. In 

some species, the shell Sr/Ca ratio increases with increasing temperature, salinity, and 

pH, probably reflecting an effect of the calcification rate on Sr incorporation. If 

temperature were the primary factor controlling downcore shell Sr/Ca variations, the 

foraminifer shell Sr/Ca ratio should be lower during colder intervals. However, the three 

species show higher Sr/Ca ratios during the cold substages, which means that 

temperature cannot have exerted a strong control in shell Sr/Ca. Experiments conducted 

with living planktonic foraminifers indicate that increases in pH and salinity lead to 

higher shell Sr/Ca ratios, with about 0.6–1.1% per 0.1 pH unit and a 0.6% Sr/Ca 

increase per 1 unit increase in salinity [Lea et al., 1999]. Since during glacial stages pH 

was slightly higher [Sanyal et al., 1995], it is likely that the water pH also increased 

during the cold substages (approximately +0.1 pH units) [Martin et al., 1999]. On the 

other hand, salinity in the Alboran Sea could increase 2-3 salinity units during cold 

substages. Therefore, both parameters could affect Sr/Ca low-frequency variations 

although they could only account for variations of less than 3%. Nevertheless, our Sr/Ca 

record shows variations of up to 8% in Neogloboquadrina pachyderma (r.c.); 7% in 

Globigerina bulloides, and 6% in Globigerinoides ruber (w). This means that other 

factors must have been involved in the low-frequency shell Sr/Ca oscillations 

documented by the three species. 

 



Thus, variations in the Sr/Ca ratios of the three species could partially be explained in 

terms of seawater Sr/Ca changes as previously suggested by Martin et al. [1999] and 

Elderfield et al. [2000]. These global glacial-interglacial fluctuations have been linked 

to the weathering of Sr from aragonitic shelf sediments during low sea level stands 

[Stoll and Schrag, 1998], although such models suggest a glacial Sr/Ca increase of 1-

3%, which is lower than the variations obtained here. Moreover, the Sr/Ca changes 

(both the increases and the decreases) in the foraminifer shells were rapid during stage 

7, which is unexpected considering the long residence times of Sr and Ca in the oceans. 

Shelf Sr weathering cannot account for such rapid increases in seawater Sr/Ca ratios. 

Martin et al. [1999] also recorded rapid and important shell Sr/Ca fluctuations in 

different species of foraminifers (up to 5%) from the Atlantic and the Pacific oceans 

over the last 300 ka, and suggested increases in both shelf carbonate deposition and the 

deglacial river flux as the mechanisms that resulted in significant rapid changes in the 

cycling of both Sr and Ca. This may also explain our results.  

 

The previous Sr/Ca ratio study based on different planktonic species made by Elderfield 

et al. [2000] reported fairly different patterns for the same three species. The authors 

suggested that factors other than Sr/Ca seawater changes may have been involved. By 

contrast, in our study the general trend of the three species is very similar and seems to 

be mainly controlled by Sr/Ca changes in the ocean, whereas the other parameters seem 

to be less important. However, there is one significant difference between the three 

records. The Neogloboquadrina pachyderma (r.c) and Globigerinoides ruber (w) 

records have the same absolute values, whereas the Globigerina bulloides values are 

slightly lower and maintain a constant offset with respect to the others over time. The 



reason for this could be physiological mechanisms, since no evidence of variable 

preservation of species has been observed in this core.   

 

If these changes in ocean Sr/Ca ratio at glacial/interglacial timescales are confirmed by 

some other studies, glacial paleotemperature reconstructions based on corals should be 

revised since coralline Sr/Ca paleothermometry assumes that mean ocean Sr/Ca is 

constant on short timescales. 

 

7. Conclusions 

The present record confirms the usefulness of Mg/Ca paleothermometry applied to 

planktonic species in order to characterize different water masses. 

 

The planktonic foraminifer species Neogloboquadrina pachyderma (r.c), 

Globigerinoides ruber (w) and Globigerina bulloides have maintained their modern 

habitat in the Alboran Sea during the last 250 ka. 

 

Geochemical features suggest that there was enhanced seasonality, with a significant 

thermal stratification of the water column in the Alboran Sea at the beginning of the 

warm substages. This gradually changed to weaker seasonality and thermal stratification 

during the cold substages.  

 

Long-term oxygen isotope and salinity variations are controlled by global ice-volume 

changes and their consequent variations in the residence time of Mediterranean water. 

When sea level was low, the residence time was presumably longer and hence this 

invoked an increase in the δ18Ow and salinity. 



 

The organic-rich layers formed during the interval studied are characterized by 

stratification of the basin due to the very low salinity of the upper water masses. Surface 

productivity did not undergo significant changes during these periods.  

 

During the possible Heinrich-like event recorded at 220 ka, another episode of water 

stratification seems to have occurred, since the upper water masses show very low 

salinities. The carbon isotope record suggests weaker mixing in the Mediterranean areas 

of deep water formation during this event. 

 

Very light oxygen isotope values are found between 160 and 170 ka, not seen in the 

Atlantic Ocean, thus suggesting an internal Mediterranean origin for this event. It is 

conceivable that this episode may have been related to the increase in monsoonal 

rainfall over the Mediterranean region, which would have caused the formation of 

sapropel 6 in the Eastern Mediterranean. A global sea level increase during this interval 

might also contribute to this δ18Ow decrease. 

 

The Sr/Ca ratios measured in shells from different planktonic foraminifer species from 

the Alboran Sea suggest that its variations are mainly related to Sr/Ca 

glacial/interglacial changes in the ocean. Variations in oceanic pH, temperature or 

salinity can only explain half of the observed fluctuations. Furthermore, the similar 

trends observed in the three species confirm that ocean Sr/Ca variations are one of the 

main factors controlling the Sr/Ca ratios in their shells. 

 



The importance of the possible changes in ocean Sr/Ca ratio at short timescales is that 

coral-derived paleotemperature reconstructions should be recalculated, since the 

assumption that ocean Sr/Ca was constant could not be true, and therefore, this method 

would have underestimated sea surface temperature during glacial times. 
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Figure captions 

Figure 1.  Location of ODP site 977 (36º 01.907´N, 1º 57.319´W) in the Alboran Sea, 

Southern Spain, Western Mediterranean. Arrows indicate the surface circulation pattern 

[Heburn and La Violette, 1990]. 

 

Figure 2. Mg/Ca scatter plot against fragmentation index (G. ruber (white), G. bulloides 

and N. pachyderma (right coiling)), showing a lack of correlation between both values 

and hence suggesting no significant effect of dissolution on the Mg/Ca measurements.  

 

Figure 3. Scatter plot of Fe/Ca, Mn/Ca and Al/Ca against Mg/Ca, showing no 

covariance between these elements (G. ruber (white), G. bulloides and N. pachyderma 

(right coiling)). 

 

Figure 4. Mg/Ca results (mmol/mol) in the three species, G. ruber (white) (red), G. 

bulloides (green) and N. pachyderma (right coiling) (blue). 

 

Figure 5. Calcification temperature estimates (a) as compared with the δ18O (b) and δ13C 

(d) records for G. ruber (white) (red), G. bulloides (green) and N. pachyderma (right 

coiling) (blue), the reconstructed surface δ18Ow (c) derived from Mg/Ca temperature 

estimates and salinity (c) based on the equation by Pierre [1999]. Also, the sea level 

curve after Shackleton [2000] and the Northern Hemisphere maximum insolation curve 

(65ºN) have been represented (d) for comparison (HE: Heinrich-like event; ORL: 

organic rich layer). The calibration equations used were: von Langen et al. [2005] 

equation for N. pachyderma (r.c.); Elderfield and Ganssen [2000] specific equation for 

G. bulloides; and Anand et al. [2003] equation (constant A assumed, 250-350 μm) for 



G. ruber (w). The straight lines in graphic a indicate the modern sea temperatures for 

the different water masses in the Alboran Sea. 

 

Figure 6. Evolution of the Sr/Ca ratio (mmol/mol) in shells from G. ruber (white) (red), 

G. bulloides (green) and N. pachyderma (right coiling) (blue) between 250 and 160 ka. 
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