Large volume submarine ignimbrites in the Shikoku Basin: An example for explosive volcanism in the Western Pacific during the Late Miocene

Steffen Kutterolf1, Julie C. Schindlbeck1, Rachel P. Scudder2, Richard W. Murray2, Kevin T. Pickering3, Armin Freundt1, Shasa Labanieh4, Ken Heydolph1, Sanny Saito5, Hajime Naruse6, Michael B. Underwood2, and Huaichun Wu8

1 GEOMAR, Helmholtz Center for Ocean Research, Kiel, Germany, 2 Department of Earth and Environment, Boston University, Boston, Massachusetts, USA, 3 Department of Earth Sciences, University College London, London, UK, 4 IFREMER, Centre de Brest, Plouzane, France, 5 Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan, 6 Department of Geology and Mineralogy, Kyoto, Japan, 7 Department of Geological Science, University of Missouri, Columbia, Missouri, USA, 8 School of Marine Science, China University of Geosciences, Beijing, China

Abstract During IODP Expedition 322, an interval of Late Miocene (7.6 to ~9.1 Ma) tuffaceous and volcaniclastic sandstones was discovered in the Shikoku Basin (Site C0011B), Nankai region. This interval consists of bioturbated silty claystone including four 1–7 m thick interbeds of tuffaceous sandstones (TST) containing ~57–82% by volume pyroclasts. We use major and trace element glass compositions, as well as radiogenic isotope compositions, to show that the tuffaceous sandstones beds derived from single eruptive events, and that the majority (TST 1, 2, 3a) came from different eruptions from a similar source region, which we have identified to be the Japanese mainland, 350 km away. In particular, diagnostic trace element ratios (e.g., Th/La, Sm/La, Rb/Hf, Th/Nb, and U/Th) and isotopic data indicate a marked contribution from a mantle source beneath continental crust, which is most consistent with a Japanese mainland source and likely excludes the Izu-Bonin island arc and back arc as a source region for the younger TST beds. Nevertheless, some of the chemical data measured on the oldest sandstone bed (TST 3b, Unit IIb) show affinity to or can clearly be attributed to an Izu-Bonin composition. While we cannot completely exclude the possibility that all TST beds derived from unknown and exotic Izu-Bonin source(s), the collected lines of evidence are most consistent with an origin from the paleo-Honshu arc for TST 1 through 3a. We therefore suggest the former collision zone between the Izu-Bonin arc and Honshu paleo-arc as the most likely region where the eruptive products entered the ocean, also concurrent with nearby (~200 km) possible Miocene source areas for the tuffaceous sandstones at the paleo-NE-Honshu arc. Estimating the distribution area of the tuffaceous sandstones in the Miocene between this source region and the ~350 km distant Expedition 322, using bathymetric constraints, we calculate that the sandstone beds represent minimum erupted magma volumes between ~1 and 17 km³ (Dense Rock Equivalent (DRE)). We conclude that several large eruptions occurred during the Late Miocene time next to the collision zone of paleo-Honshu and Izu-Bonin arc and covered the entire Philippine Sea plate with meter thick, sheet-like pyroclastic deposits that are now subducted in the Nankai subduction zone.

1. Introduction

The Nankai Trough Seismogenic Zone Experiment (NanoTROIZE) was initiated to observe the updip limit of the seismogenic zone along a subduction boundary that is well known for the occurrence of large tsunamigenic mega-thrust earthquakes [Tobin and Kinoshita, 2006]. The Nankai Trough, representing the surface expression of the site where the Philippine Sea plate subducts approximately normal to the strike of the trench beneath the Eurasian Plate (~4 cm/yr) [Seno et al., 1993], was selected for this experiment (Figure 1). As a prerequisite for drilling to depths where earthquakes occur, several key components of the plate-boundary system needed to be investigated in order to improve our understanding of subduction inputs. Therefore, a major goal of IODP Expeditions 322 and 333 was the characterization of the presubduction inputs of sediment and oceanic basement.
To accomplish these objectives, coring was conducted at two sites in the Shikoku Basin on the subducting Philippine Sea plate (Figure 1). IODP Sites C0011 and C0012 are located ~100 km southeast of the Kii Peninsula and ~150–200 km west of the Izu-Bonin arc at the Kashinosaki Knoll, a prominent bathymetric seafloor high. Site C0011 on the northwestern flank of the Knoll has an expanded stratigraphic section whereas Site C0012 near the crest represents a condensed sediment section above oceanic crust (Figure 1).

The Shikoku Basin, in which the subducting sediments were deposited, was created on the Philippine Sea plate during the Early and Middle Miocene by seafloor spreading in a backarc setting relative to the Izu-Bonin subduction system [Kobayashi et al., 1995]. The lithostratigraphy of the Shikoku Basin has historically been divided into the lower (Late to Early Miocene) and the upper (Holocene to Late Miocene) Shikoku Basin deposits [e.g., Underwood, 2007]. However, the lithostratigraphic results from Expedition 322 further indicate the presence of an important and additional "middle Shikoku Basin" deposit, represented by volcanogenic sandstone-rich stratigraphic Unit II (Figure 2), at least in the eastern part of the Shikoku Basin.

In total, five major stratigraphic units have been defined on the basis of lithofacies observation [Underwood et al., 2010] (Figure 3). Unit I (0–347.82 m below sea floor (mbsf)) corresponds to ash-rich, fine-grained hemipelagites with ash-layer abundance and glass-shard freshness decreasing downward [Expedition 333 Scientists, 2011]. An abrupt lithologic change at 347.82 mbsf marks the Unit I/Unit II boundary with the appearance of coarser-grained tuffaceous sandstones (Figures 2 and 3) and heterolithic gravel and sand in low to moderately bioturbated silty claystones. The age of Unit I ranges from Quaternary to Late Miocene (0 to ~7.6 Ma) whereas Unit II (347.82–479.06 mbsf) comprises sediments from 7.6 to ~9.56 Ma [Zhao et al., 2013]. Underlying Units III to V reach an age of 18.9 Ma at the basement/sediment boundary at Site C0012.

This paper uses geochemical data to constrain the source region of Unit II volcanic matter-rich beds and assess volume estimates for their related eruptive events. The question if the sandstone beds have been fed by the proximal (Izu-Bonin arc and rear arc) or more distal (Japanese mainland) source area will help to constrain the distribution of these sheet-like deposits [see Pickering et al., 2013] of the middle Shikoku Basin on the incoming Philippine plate and allow further research on their possible influence on the Nankai subduction zone. The mode of formation of these beds is discussed elsewhere [Schindlbeck et al., 2013].
2. Samples and Methods

We have quantified lithologic components by point counting of 85 shipboard smear-slides of Unit II sediments [Underwood et al., 2010] (Figure 4 and Table S1) and analyzed geochemical compositions of glass shards and pumice fragments of 31 sandstone samples, using electron microprobe for major elements (15–20 individual shards per sample) on all samples, and laser ablation ICP-MS for trace elements (1–16 individual shards per sample) on nine selected tuffaceous sandstone samples (Table S2).

2.1. Electron Microprobe

Glass shards analyses (465) were performed by electron microprobe (EMP) for major and minor elements as described in Kutterolf et al. [2011]. EMP analyses were conducted on epoxy embedded samples with a JEOL JXA 8200 wavelength dispersive electron microprobe at GEOMAR, Kiel, using 15 kV accelerating voltage, a beam defocused to 5 μm with currents of 6 nA for felsic glass, and counting times of 20–40 s for most major and minor elements and 10–20 s for backgrounds. Natural and synthetic glasses and minerals were used as standards for calibration. Accuracy has been monitored by standard measurements on Lipari obsidian while 50 individual glass shard measurements are bracketed by two standard measurements at the beginning and the end of each analytical series. Regarding 54 monitor measurements standard deviation on Lipari [e.g., Hunt and Hill, 2001] is <0.5% for silica, between 1% and 7% (Na₂O, K₂O, FeO₂tot, CaO, Al₂O₃) and 14–19% (TiO₂, MgO) for the other major elements (except for MnO₂ and P₂O₅; see supporting information Table S4). All analyses are normalized to 100% to eliminate the effects of variable postdepositional hydration and analysis with total oxides <85 wt % have been excluded from the data set to avoid obvious effects of alteration throughout all elements. Finally, 393 microprobe analyses have passed the quality check since accidental shots on microcrystal have also been excluded from the data set.

2.2. LA-ICPMS

Trace element concentrations of 45 glass shards have been conducted by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) at Frankfurt University (1) and GEOMAR (2) using (1) a Merchantek LUV213TM petrographic laser microprobe in conjunction with a Finnigan MAT ELEMENT2TM high-resolution ICP double-focusing mass spectrometer and a laser beam that was set to 30 μm in diameter and operated in ultra-violet modus at 213 nm using Q-switched laser energy of 2 mJ and a 5 Hz repetition rate; (2) a 193 nm excimer laser ablation system (Coherent, GeoLasPro) coupled to a double-focusing, high-resolution magnetic sector mass spectrometer (Nu Instruments, AttoM) and a laser beam that was set between...
16 and 24 μm spot size using 5–8 J/cm² energy density at 1–5 Hz repetition rate. International standard glasses were measured every five to eight samples to monitor accuracy and silica and calcium concentrations, measured by EMP, are used as an internal standard to calibrate the trace element analyses. Average precision and accuracy estimates based on 26 replicate analyses of synthetic NIST 612 and NIST 611 standards are <10% for most elements and most monitor analyses (see supporting information Table S4). Ten individual glass shard measurements are bracketed by two to three standard measurements at the beginning and end of each analytical series. Average compositions of analyzed glasses are given in supporting information Table S2.

2.3. Isotopes

One pumice clast from the youngest Tuffaceous sandstone 1 (322-C0011B-2R-CC 9–11 cm; Figure 3 red box) was crushed into chips and cleaned for Sr, Nd, and Pb isotope analysis. Sr-Nd-Pb isotope analyses were performed on /C24 100 mg whole rock chips in Class 1000 clean rooms. The leached chips (2 N HCl at 70°C for 60 min and triple rinsed with ultrapure water thereafter) were weighed in Teflon beakers and digested in a solution of ultrapure concentrated HF and HNO3 (5:1) at 150°C for 60 h. Ion chromatography was carried out following the procedures of Hoernle et al. [2008] and Hoernle and Tilton [1991]. The isotope analysis was carried out at GEOMAR using a Thermo Finnigan TRITON (Sr, Nd isotopes) and Finnigan MAT 262-RPQ2 (Pb isotopes) thermal ionization mass spectrometers operating all in static mode. Within-run normalization factors were 0.1194 for 86Sr/88Sr and 0.7219 for 146Nd/144Nd. All errors are reported as 2 sigma of the mean. NBS 987 values measured along with the sample were normalized for the analytical session to 87Sr/86Sr = 0.71025 and the session specific normalization value applied to the sample data. Similarly the Nd isotope data are reported relative to La Jolla 143Nd/144Nd = 0.511850 ± 0.000007 for the TRITON. Lead isotope ratios are normalized to NBS 981 values from Todt et al. [1996]. The long-term reproducibility of NBS 981 measured along with the samples is 206Pb/204Pb = 16.899 ± 0.007, 207Pb/204Pb = 15.437 ± 0.009, and 208Pb/204Pb = 36.525 ± 0.029 (n = 189). Total blanks during this measuring series for Pb chemistry were <100 pg and thus are considered negligible. This sample yielded 87Sr/86Sr: 0.703680 ± 0.000003, 143Nd/144Nd: 0.513012 ± 0.000003, 206Pb/204Pb: 1840
2.4. Alteration

All microanalyses aimed at the center of glass shards because variable submarine alteration [Kutterolf et al., 2007] first causes elemental exchange at the surface of single glass shards. The effects of alteration are most commonly manifested as decreased iron, silica, and calcium values, as well as increased aluminum concentrations when the samples are near the top or the base of the tuffaceous sandstones [Schindlbeck et al., 2013]. This most probably reflects simplified interaction with seawater at sediment-sediment or sediment-water boundaries (see also experimental results in Schacht et al. [2008]). The rest of the tuffaceous sandstones are more preserved from alteration, probably because of poor sorting and thus closed pore-spaces. This is also reflected by average totals around 93 wt % which are normal values for marine tephras [e.g., Kutterolf et al., 2008, Lowe et al., 2008]. Nevertheless, our results are also supported by the study of Bryant et al. [2003] who determined average totals for Izu Bonin glasses of 90–100 wt % and no systematic relationship between age and degree of hydration, especially in Izu-Bonin tephras younger than 10 Ma.

3. Unit II and the Tuffaceous Sandstones

Lithologic Unit II, representing the newly defined “middle Shikoku Basin” sediment formation, has been divided into two subunits, IIA and IIB, based on the abundance of volcanic glass shards, mineral, and or lithic contents (Figure 4 and Table S1) and whole-rock compositional data gathered by shipboard XRF [Underwood et al., 2010]. The upper subunit IIA (347.82–377.61 mbsf) consists of silty claystone and includes three 1–10 m thick interbeds of tuffaceous sandstones (TST) [cf. Fisher and Schmincke, 1984], characterized by high amounts (57–82%) [Schindlbeck et al., 2013] of pyroclasts in their modal compositions. Unit IIB (377.61–479.06 mbsf), with a silty claystone to siltstone dominated background sedimentation, shows a transition from interbedded volcaniclastic sandstones (>25% volcanic clasts) at the top to normal sandstones (<25% volcanic clasts) at the base (Figures 2 and 4).

TST 1 and 3 were not completely recovered while a complete core of the 1.75 m thickness of TST 2 is available. Of the three sandstone packages, tuffaceous sandstones 1 and 2 are single beds whereas tuffaceous sandstone 3 is composed of at least two beds (3a, 3b, top to bottom), suggesting two discrete sedimentation events [e.g., Schindlbeck et al., 2013].

Figure 4. Smear slide petrographic data [Underwood et al., 2010] for Unit II versus depth (mbsf) showing the stratigraphic changes in lithic components and magmatic minerals within the subunits by criteria for division into “normal,” “volcaniclastic,” and “tuffaceous” sandstones. Red line indicates 25% of pyroclasts.

18.327 ± 0.000429, 207/206Pb: 15.559 ± 0.0002, and 208/204Pb: 38.364 ± 0.0008; all errors are reported as 2 sigma of the mean (supporting information Table S3).
Petrographic and geochemical analyses constrain the interpretation of the tuffaceous sandstone beds as density-graded volcaniclastic turbidites that formed during distinct, compositionally homogeneous volcanic events, probably the entrance of massive pyroclastic flows into the ocean, as opposed to the collapse of compositionally heterogeneous continental slope sections [Schindlbeck et al., 2013].

4. Provenance of the Tuffaceous Sandstones

Fresh glass shards and pumice fragments dominate the component inventory of the tuffaceous sandstones (Figures 4 and 5). They have fairly uniform major element compositions suggesting a provenance from a

Figure 5. (a) TiO$_2$ versus K$_2$O, (b) K$_2$O versus MgO, (c) CaO versus SiO$_2$, (d) K$_2$O versus SiO$_2$, and MgO versus SiO$_2$ diagrams with glass shards of tuffaceous sandstone 1–3 in comparison to glass shard analysis from pumices in submarine mass flows, ashes, and on-shore tephras from Izu-Bonin arc and rear-arc after Arculus and Bloomfield [1992], Bryant et al. [2003], Clift et al. [2003], Straub [2003], Straub et al. [2004], and the references therein. Additionally, gray, red, blue, and yellow fields show the magmatic compositions (if available and fitting the range of the diagram) of the Japanese volcanic (paleo-)arc (Setouchi Volcanic Belt, Northern Honshu arc, and Kii peninsula at Southern Honshu arc [e.g., Clift et al., 2003; Hanaya et al., 2006; Hunt and Najman, 2003; Kobayashi and Nakamura, 2001; Shinjoe et al., 2002, 2007; Tatsumi, 2006]) as well as from the Ryukyu arc [Shinjo et al., 2000] and Northern Kyushu arc [Shibata et al., 2013].

Petrographic and geochemical analyses constrain the interpretation of the tuffaceous sandstone beds as density-graded volcaniclastic turbidites that formed during distinct, compositionally homogeneous volcanic events, probably the entrance of massive pyroclastic flows into the ocean, as opposed to the collapse of compositionally heterogeneous continental slope sections [Schindlbeck et al., 2013].
common source region. Only the lowermost tuffaceous sandstone bed (TST 3b in Figure 5) and the volcani-
clastic sandstones of Unit IIb differ in their chemical composition.

In the following, we will determine correlations and miscorrelations between Unit II sandstones chemical compositions and published data for each possible provenance area. Single diagrams may not be irre-
vocable proofs of provenance because we cannot exclude the match of some exotic compositions to our
Unit II sandstones, but considering all data, we will suggest a fairly solid provenance model for these
sandstones.

4.1. Provenance of the Tuffaceous Sandstones: Major and Trace Elements

Regarding the glass compositions, our analyzed tuffaceous sandstones show moderate K2O values (2.1–3.3 wt %), low MgO (0.16–0.33 wt %), FeO (1.16–1.6 wt %), CaO (1.16–1.88 wt %), and high silica (77.59–78.95 wt %) contents. The major-element compositions of pyroclasts of the younger sandstones TST 1, 2, and 3a differ slightly between each other but mostly from typical Izu-Bonin volcanic arc and rear-arc glass compositions particularly in K2O and TiO2 [data from Arculus and Bloomfield, 1992; Bryant et al., 2003; Clift et al., 2003; Straub, 2003; Straub et al., 2004] (Figure 5a). In contrast, older TST 3b and volcani-clastic sandstones of Unit IIb show a much clearer match to the Izu-Bonin compositional fields in Figure 5a.

Figure 6. Trace element discrimination diagrams ((a) Rb versus Th, (b) Ba versus Th, (c) U versus Th, and (d Yb versus Ba) to distinguish between volcanics in Unit II. For comparison, the available trace elements from the literature listed in Figure 5 are shown and are com-
plemented by data from Arculus and Bloomfield [1992], Clift et al. [2003], Egberg et al. [1992], Freyer et al. [1990], Hiscott and Gill [1992], Ishizuka et al. [2006], Kimura et al. [2002], Kimura and Yoshida [2006], Machida et al. [2008], Shibata and Nakamura [1997], Straub et al. [2004, 2010],
Tamura et al. [2009], Tagashi et al. [1992], and the references therein for the Izu-Bonin arc. Filled symbols represent the bulk rock data,
unfilled glass analyses. Squares show the data in sample with <70% silica round bullets with >70% silica.
show the data in sample with IBM data, filled symbols represent the bulk rock data, unfilled glass analyses. Squares able trace elements from the literature listed in Figures 5 and 6 are shown. Regarding marine Arc tephras from IODP Site 1151 from Southern Honshu arc [e.g., noes Osore, Akagi, Nekoma, and Ueno modified after and WPB, within plate basalts. (b) Shaded fields represent data from NE Japan arc volca-
OIA, ocean island arc; ACM, active continental margin; WIPvolc, within plate volcanics; Tertiary and Quaternary Japanese arc rocks are modified from provenances in comparison with the Unit II sandstone results. (a) Provenance fields for Nb/Zr versus La/Sm [Figure 7.

```
Figure 7. Trace element ratio (a) Th/Yb versus Ta/Yb (Gorton and Schandl, 2000) and (b) Nb/Zr versus La/Sm (Clift et al., 2003) plots indicating different Japanese and Izu-Bonin provenances in comparison with the Unit II sandstone results. (a) Provenance fields for Tertiary and Quaternary Japanese arc rocks are modified from Gorton and Schandl (2000); OIA, ocean island arc; ACM, active continental margin; WIPvolc, within plate volcanics; and WPB, within plate basalts. (b) Shaded fields represent data from NE Japan arc volca-noes Osore, Akagi, Nekoma, and Ueno modified after Clift et al. (2003) and NE Japanese marine Arc tephras from IODP Site 1151 from Clift et al. (2003). For comparison, the available trace elements from the literature listed in Figures 5 and 6 are shown. Regarding IBM data, filled symbols represent the bulk rock data, unfilled glass analyses. Squares show the data in sample with <70% silica round bullets with >70% silica.
```

The same can be seen when considering also the evolved bulk rock compositions from the Izu-Bonin arc or rear-arc [e.g., Egberg et al., 1992; Freyer et al., 1990; Hiscott and Gill, 1992; Ishizuka et al., 2006; Machida et al., 2008; Nishimura et al., 1992; Straub and Layne, 2003; Straub et al., 2010; Tamura et al., 2009; Tani et al., 2008] and also elements such as K2O, CaO, MgO, and SiO2 (Figures 5b–5e). In general, we cannot exclude an overlap with major element contents from our tuffaceous sandstones, but (1) the overlap is fairly small regarding the younger tuffaceous sandstones 1, 2, and 3a and (2) only TST 3b and the volcaniclastic sandstones show stronger overlapping especially with Izu-Bonin rear arc compositions.

However, the younger tuffaceous sandstones (and partly sandstones from TST 3b and Unit IIb) overlap better with magmatic compositions of the Japanese volcanic (paleo-)arc (data from Setouchi Volcanic Belt, Northern Honshu arc, and Kii peninsula at Southern Honshu arc [e.g., Clift et al., 2003; Hanyu et al., 2006; Hunt and Najman, 2003; Kimura and Yoshida, 2006; Kobayashi and Nakamura, 2001; Shinjo et al., 2002, 2007; Tatsumi, 2006]). If available, provenance fields for the Ryukyu arc and Northern Kyushu arc, based on data from Shinjo et al. (2000) and Shibata et al. (2013), respectively, clearly mismatch the data from all tuffaceous sandstones.

Trace element contents (e.g., Rb, Th, U, Ba, Yb; Figures 6a–6d) show better that our data can be separated into two groups: a "young" sandstone group, defined by samples from tuffaceous sandstone 1 to 3a and an "old" sandstone group defined by samples from the volcaniclastic sandstones of Unit IIb and TST 3b. Confirming the results from major element chemistry, this suggests that at least two, probably temporally distinguishable, source areas were tapped by the sandstones of Unit II.

Comparison to the provenance fields of Ryukyu, Kyushu, and Honshu arc as well as Izu-Bonin arc and rear-arc reveal no clear correlations between these potential source areas and the younger tuffaceous sandstones (Figure 6).

However, Northern Kyushu arc and Northern Honshu arc data fields, where available, seem to be the best approximation for a possible source area of the younger TST sandstones (Figure 6). In contrast, we observe that samples from TST 3b and the volcaniclastic sandstones of Unit IIb are similar to the Izu-Bonin rear-arc data and different from the Izu-Bonin arc data and from the other arc provenance fields (Figure 6).

4.2. Limitations in Provenance Study Regarding Major and Trace Elements

Comparing major and trace element compositions of the different Unit II sandstones with data from potential source areas in that region indicate that compositions commonly overlap to varying degrees. Some of this overlap may reflect different analytical techniques in the literature, as the lack of Late Miocene glass
data in the literature necessitates comparison to bulk rock data of evolved and more primitive tephras, lavas, and younger rocks.

Surprisingly, the partly heterogenic comparative data sets from literature (volcanic complexes, volcanoes, or arc segments) do not differ significantly from each other at one source, although the respective used analytics and/or grade of differentiation of analyzed samples within this provenance field in this literature data often varies (often a mixture of data from highly evolved and primitive rocks as well as lava (bulk rock) and tephras (glass), due to the limited available data in the literature). Therefore, they are still suitable for our provenance study regarding our basic correlation to general arc provinces, and not to specific volcanic centers.

Available samples in Unit II sediments do not allow to constrain the amount of fractional crystallization that may have affected the primary magma and thus the enrichment of compatible and incompatible elements of the evolved magmas that generated the pumice clasts contained in the tuffaceous sandstones. Since we do not have those samples we use trace elements and especially trace element ratios that are not significantly changed by differentiation processes to evaluate the provenance signatures. Although we cannot completely rule out the effect of some crystal fractionation, Nb/Zr ratios, for example, could be widely changed by zircon but it is not often observed in the pumice clasts of Unit II, we consider the trace element ratios as our best tool to unravel the provenance of our tuffaceous sandstones.

4.3. Provenance of the Tuffaceous Sandstones: Trace Element Ratios

With this limitation in mind, a Th/Yb versus Ta/Yb diagram allows to distinguish between Quaternary and Tertiary magmatic compositions from the Japanese mainland [Gorton and Schandl, 2000]. Including also the Izu-Bonin arc and rear-arc data used in the previous diagrams, Figure 7a shows that Unit II pyroclast compositions largely overlap with the Japanese Tertiary field, in agreement with the sandstones ages (Figure 1).
Similarly, the sandstone data overlap with the Japanese arc in a Nb/Zr versus La/Sm space (Figure 7b). The previously used Kyushu, Ryukyu, N-Honshu, and S-Honshu (Kii) arc data mimic completely the more general provenance fields shown by Clift et al. [2003]. In both diagrams, however, the lowermost tuffaceous sandstone (TST 3b) and volcanic sandstones from Unit IIB differ again from the younger TSTs by overlapping, or lying close to the Izu-Bonin data.

4.4. Provenance of the Tuffaceous Sandstones: Continental Signal

Izu-Bonin lavas have a strong signature from aqueous fluids released by the slab [Straub and Layne, 2003] while Japanese mainland has experienced melting of sediment or crustal assimilation or anything that gives a crustal signature [e.g., Stern et al., 2003]. Elevated values of Th/La, Rb/Hf, and Th/Nb (Figure 8), therefore, suggest an influence of continental crust or subducted terrigeneous sediment on the magmatic compositions [e.g., Hannah et al., 2002; Bryant et al., 2003], whereas elevated values of U/Th and Ba/La indicate an influence by pelagic sediments or fluids that had equilibrated with them [e.g., Carr et al., 2007; Patino et al., 2000]. Thus, high U/Th at low Th/Nb in Izu-Bonin arc data (Figure 8a) suggests a strong influence of pelagic sediment-derived fluids on Izu-Bonin magmatic compositions [cf. Straub and Layne, 2003] that seems to be shared by pyroclast compositions of TST 3b and volcanic sandstones of Unit IIB. Pyroclasts of the other sandstones, however, have elevated Th/Nb at low U/Th and thus are probably derived from a magmatic source that was influenced by terrigeneous sediment or continental crust (Figure 8a).

The same distinction can be made if looking to a Th/La versus Sm/La or Rb/Hf versus Th/Nb diagrams where Rb/Hf and Th/La ratios are proxies for a continental source influence (Figures 8b and 8c). Higher Sm/La values are found in the Izu-Bonin data that are probably more affected by MORB-like crust and show similarities to TST 3b and the volcaniclastic sandstones of Unit IIB (Figure 8b).

In contrast to this rather clear correlations of tuffaceous sandstone 3b and Unit IIB volcaniclastic sandstones to the Izu-Bonin (rear-)arc source, the compositions of the younger tuffaceous sandstone beds 1 to 3a overlap partly with data from the continental Quaternary and Miocene Japanese arc (Figure 8 and references in caption of Figures 5 and 6). Opposed to the Japanese mainland [e.g., Stern et al., 2003; Isozaki et al., 2010], there is neither continental crust nor trench sediment of continental composition at the Izu-Bonin arc, which therefore also supports our interpretation that the Izu-Bonin arc is not a likely source region for the tuffaceous sandstones TST 1, 2, and 3a, which have high Th/Nb, Th/La, and Rb/Hf values. The minor differences in trace element ratios between the individual younger TST beds most probably indicates different eruptions of the same (or if different, then regionally related) eruptive centers, an interpretation that is in agreement with Schindlbeck et al. [2013].

Our interpretation is further supported by the work of Stern et al. [2003] who summarized the evolution of the IBM as being a good example of intraoceanic convergent margins that are built on oceanic crust, in contrast to island arcs originating on continental crust (e.g., Japanese arc systems or the Andes). In the case of the IBM, the collision of the IBM with the continental Honshu arc has taken place since 15 Ma [Stern et al., 2003] and may have influenced the magmatic compositions. Nevertheless, strong compositional differences between modern IBM tephras and other arc systems in that region have existed over most of the arc’s history, with northern IBM being more depleted and southern IBM being relatively enriched [Stern et al., 2003]. In contrast, Tamura et al. [2009] claimed that there are also some indications of continental crust-influenced rocks (rhyolites) from Izu-Bonin arc volcanoes due to partial melting of the middle crust (tonalite) that can be found in Late Quaternary tephra compositions and that there are some temporal changes between Tertiary and Quaternary volcanic rocks from IBM.

We cannot exclude the possibility that some exotic volcanic products from IBM may show a continental signature similar to that of the palaeo-Honshu arc and that they may be correlative to our younger tuffaceous sandstone compositions. But since Tamura et al. [2009] restricted the occurrence of those special rhyolites from the IBM to the Quaternary and our tuffaceous sandstones are from the Miocene we are confident in our interpretation that the younger Miocene tuffaceous sandstones (1, 2, and 3a) originated from a crustal-like Japanese arc source.

4.5. Provenance of the Tuffaceous Sandstones: Far Travelled Volcanics

To summarize the chemical and sedimentological data, we posit that the tuffaceous sandstone 3 comprises one turbidite with an Izu-Bonin chemical signature (TST 3b) and another with a Japan arc signature (TST 3a).
that prevailed for the subsequent sandstones. Thus, TST 3a and TST 3b most probably derived from distinct source regions (IBM versus Japanese mainland) and judging from lithological structures and grain sizes [Underwood et al., 2010], both seem to have traveled similar distances from their sources. We therefore favor a deposition site where both geochemical signatures were available within a plausible distance (10s to 100s kilometers) [e.g., Schindlbeck et al., 2013] from their volcanic source. Only the wider region around the collision zone between the Izu arc and the Japanese paleo-arc (represented today by the Izu Peninsula on Japanese mainland) facilitated the tapping of both volcanic sources.

This hypothesis is consistent with the plate tectonic reconstruction by Pickering et al. [2013]. Additional supportive evidence comes from isotope analysis of a pumice fragment from tuffaceous sandstone 1. While admittedly only a single analysis, tuffaceous sandstone 1 shows less radiogenic 206Pb/204Pb values for similar 87Sr/86Sr isotopic compositions compared to Izu-Bonin arc and rear arc tephras [Straub et al., 2004], but equal the 206Pb/204Pb, 208Pb/204Pb, and 87Sr/86Sr ratios of the Miocene N-Kyushu rocks or modern Fuji volcano [Gust et al., 1997; Nakamura et al., 2008; Watanabe et al., 2006], which is part of the Honshu volcanic front in the vicinity (<100 km) of today’s Izu Peninsula (Figure 9).

Unit IIB, underlying the tuffaceous sandstones of Unit IIA, is much more heterogeneous in lithology and chemical composition. It is mainly composed of sedimentary clasts that are associated with upward increasing fractions of volcanic glasses that have distinct major and trace element compositions compared to the tuffaceous sandstones of Unit IIA (Figures 4–6 and Table S2). Thus, there is a change in provenance from Unit IIB to IIA. Within lowermost IIA, we have demonstrated a change in provenance from tuffaceous sandstone beds 3b to 3a. Unit TST 3b, which shows similarities to glass shards present in the volcaniclastic sandstones of Unit IIB, represents the last occurrence of an Izu-Bonin geochemical signature at site. Using sediment accumulation rates of 6 cm/kyr estimated for this time interval at Site C0011 [Underwood et al., 2010], we calculate an age between 7.8 and 8.3 Ma. We interpret that this age of TST 3b possibly also constrains the onset of a new collision phase between the Izu-Bonin arc and the Japanese paleo-arc, which would be consistent with a depositional area between Izu-Bonin and Honshu arc [Pickering et al., 2013; Mahony et al., 2011].

The compilation of provenance results from major and trace element chemistry, isotopic ratios, comparison to correlative data from geologically feasible and available source areas, strongly suggests an origin of the

Figure 9. Lead and strontium isotope ratios (a) as well as 206Pb/204Pb and 208Pb/204Pb isotope ratios (b) of a pumice sample from tuffaceous sandstone 1 (see Figures 2 and 3) in comparison to provenance fields [Straub et al., 2004] indicating Izu arc and rear arc compositions, Shikoku/Oarece Vela Backarc Basin compositions as well as data from Miocene NE Japanese rocks (white field) and Fuji (white cross) [Nakamura et al., 2008; Watanabe et al., 2006] volcano located in the vicinity of the collision zone between Izu arc and Honshu arc. Two sigma errors are below symbol size. Northern Hemisphere reference line (NHRL) is after Hart [1984].
younger tuffaceous sandstones 1 to 3a from the paleo-Honsu arc, and from the Izu-Bonin arc for TST 3b. We note, however, that we sensu stricto cannot rule out the tuffaceous sandstones 1 to 3a as originating from an Izu-Bonin source although, in our opinion, the majority of the compiled evidence supports our interpretation. Indeed, the evidence from mineral chemistry and the differences in sedimentology described by Schindlbeck et al. [2013] additionally favors this suggestion. Our interpretation is also the most consistent with the regional perspective to match both larger source areas (within a wide regionally range allowing also an origin from the regular paleo-Honshu arc) in one depositional area.

While future research, especially regarding different compositions from the different source areas, may give further constraints and answers to this discussion, the possibility of a paleo-Honshu source, not necessarily within the collision zone itself but in the hinterland, is additionally supported by other lines of evidence, including:

1. The numerous (~100) Late Miocene calderas available at the NE-Honshu arc, with the most southern one located only ~150 km from the coastline at the IBM-Honshu arc collision zone [Acocella et al., 2008; Yoshida, 2001], where the subaerial pyroclastic flows have been transferred into the submarine pyroclastic turbidities travelling to the final depositional area.

2. Similar potassium versus silica compositions in the similar time range (8 Ma) [Acocella et al., 2008].

3. Kimura and Yoshida (2006) assist the crustal signature of the Quaternary NE-Honshu magmas and the resulting provenance fields correlates best with our tuffaceous sandstones, as well as

4. Comparable younger (4 Ma) ignimbrite sheets (ZNp tephra) spanning 600 km southwest to northeast over central Japan, being sourced somewhere in the central Honshu region and traveled to Boso peninsula in the Izu-arc-paleo Honshu arc collision zone [Allen et al., 2012].

5. Submarine Volcaniclastic Turbidite Sheets

Three long-lived submarine depositional systems have contributed to the basin evolution of the Shikoku Basin [Pickering et al., 2013]. Sediments of Unit IIB were deposited in channels of the older so called Daiiichi Zenisu Fan, while the younger Daini Zenisu Fan, that has a sheet-like geometry, contains the thick-bedded and coarse-grained tuffaceous sandstones of Unit IIA (e.g., Figure 3). Given that the palaeo-Honshu arc around today’s Izu Peninsula is the most plausible source region of the tuffaceous sandstones, their depositing density currents, which originated from pyroclastic flows on land [Schindlbeck et al., 2013], must have travelled ~300 km to reach Site C0011 of Expedition 322 [e.g., Figure 1].

With these geometric constraints, we can estimate the volume of the tuffaceous sandstone beds in order to characterize the magnitude of their parental volcanic eruptions and to demonstrate the impact of these sheet-like deposits on the region. However, the exact geometry of the deposits is unknown and we thus use three scenarios for minimum, conservative, and moderate volume. The minimum case assumes the sandstones are entirely confined to 1 km wide channels along which their thickness decreases with distance from their source (~300 km travel distance) due to continuous sedimentation such that the thickness at Site C0011 is one third the initial thickness. Strong channeling, however, does not fit the seismically constrained sheet-like shape of the younger Daini Zenisu Fan [Pickering et al., 2013]. The conservative and medium cases refer to a sheet-like geometry with sheet widths of 10 and 25 km, respectively; the thickness decay with distance is the same as for the minimum case. The total deposit volumes (Vt) are converted to dense-rock equivalent (DRE) magma volumes (Vm) using the function

\[
V_m = V_t \left(\frac{p c + j p_p}{c q_m} \right) \frac{1}{j}
\]

where \(j = 0.75 \) is the mass fraction of juvenile pyroclastics in the sandstone, \(p \) is the mass fraction of pumice/glass shards in the juvenile fraction, \(c \) is the mass fraction of crystals in the juvenile fraction, \(p_p = \) pumice/glass density, \(p_c = \) crystals density, and \(q_m = \) density of vesicle-free magma. The resulting DRE magma volumes are ~0.5 km³ for each tuffaceous sandstone bed for the minimum case, and ~5 and ~17 km³ for the conservative and medium scenarios, respectively, and speak to the potentially large size of the responsible volcanic eruptions.
6. Summary

The “middle Shikoku Basin” sediment succession encompasses a lower subunit IIB with an Izu-Bonin arc source and an upper subunit IIA that contains three packages of tuffaceous sandstones (TST 1–3), which are dominated by compositionally homogeneous pyroclastic material derived from distinct eruptive events. Comparison of characteristic magmatic trace element ratios for potential source regions constrains a most likely provenance of the sandstones in the hinterland of the former collision zone between Izu-Bonin and Japanese paleo-archs, although a single source area at the Izu-Bonin arc or the paleo-Honshu arc cannot be completely excluded. While the composition of the lowermost TST 3b has an Izu-Bonin signature, compositions of the overlying sandstones have a trace-element signature typical of the Japanese continental arc.

These compositional signatures support the interpretation that the depositional area of the investigated sandstone beds tapped both arc systems between 7.6 and 8.3 Ma. From ~7.8 Ma on until almost 7.6 Ma, at least three large-volume eruptions, most probably ignimbrite-forming and discharging at least ~0.5 to 13 km3 (DRE) of magma, have occurred only at the source region on the Japanese mainland. These wide and voluminous distributions of the tuffaceous sandstones on the surface of the Philippine Plate have the potential to also affect the subduction processes regionally, with regard to alteration processes, pore water chemistry, and sediment composition.

Acknowledgments

This research used samples and/or data provided by the Integrated Ocean Drilling Program (IODP). We thank the German Research Foundation to support this study by the grant KU 2685/1-1. We appreciate the great help of Jan Fietzke and Edmund Hathorne during the first LACPMS analyses with the quadropole LA-ICPMS shortly before the AGU and together with Matthias Frische and Dagmar Rau the subsequent measurements in the new LACPMS laboratory of GEOMAR. Special thanks go to Folkmar Hauff for providing the isotope labs at GEOMAR. Special thanks also go to Edmund Hathorne during the first LA-ICPMS analyses with the quadropole LA-ICPMS laboratory of GEOMAR. Special thanks also go to Folkmar Hauff for providing the isotope labs at GEOMAR. Special thanks also go to Edmund Hathorne during the first LA-ICPMS analyses with the quadropole LA-ICPMS laboratory of GEOMAR.

References

Accella, V., T. Yoshida, R. Yamada, and F. Funicelliolo (2008), Structural control on late Miocene to Quaternary volcanism in the NE Honsyu arc, Japan, Tectonics, 27, TC5S08, doi:10.1029/2008TC002296.

