1. Motivation
The Laptev Sea polynyas play a key role for the shelf areas of the Siberian Arctic because of their impact on ice production. Changes in polynya dynamics result in modified fluxes of energy, momentum and matter in the atmosphere-ocean-sea ice system.

2. Model description
FESOM consists of a hydrostatic primitive-equation ocean model and a dynamic-thermodynamic sea ice model. In the model version used here the dynamics of the Laptev Sea polynyas depend mainly on the components of the sea ice part. It is based on a 2-dimensional momentum equation (dynamic) and a scheme for energy balance (thermodynamic). The computational mesh is a triangular grid with 17 z-levels and corresponds to the regular grid with 5 km x 5 km of the COSMO model (Schröter et al. 2009). Operationally, the model is forced by daily NCEP/DOE (NCEP 2) reanalyses. In our study we use different types of forcing to investigate a polynya event during the TRANSDRIFT winter experiment 2008.

3. Initialisation
Initial pack ice concentration is derived from AMSR-E data, fast ice is treated as immovable sea ice with 100% concentration. The position of the fast ice edge (Fig. 1) was derived from AMSR and MODIS data. Initial ice thickness is taken as 1 m, snow thickness on sea ice as 5 cm, and ocean temperature and salinity from the World Ocean Atlas (2001).

4. Atmospheric forcing
Different types of atmospheric forcings are used: Daily and 6-hourly NCEP 2 reanalyses (1.875° x 1.875°), 6-hourly NCEP 1 reanalyses (2.5° x 2.5°), 6-hourly GME analyses (0.5° x 0.5°) and hourly COSMO data (5 km x 5 km). The input data consists of 10 m-wind, 2 m-temperature and specific humidity, total cloudiness and precipitation rate. The simulations are started on 1 April 2008 and ended on 30 April 2008. In order to test the quality of the forcing data, comparisons with in-situ data of the TRANSDRIFT experiment 2008 have been performed. They show shortcomings of the atmospheric model data with respect to the daily course of the temperature, but very good agreement for the wind (Fig. 2).

5. Results
The last days of April are characterised by a grand polynya event of the WNSP. This opening process is realistically represented in the simulations with all different forcing fields except with daily NCEP 2 (Fig. 3). However, there are differences in direction and velocity of the ice drift and in the location and development of the polynyas.

References

Acknowledgements
This work was part of the German-Russian cooperation ‘System Laptev Sea’ funded by the BMU under grant 03EK0936, RosHYDROMET and the Russian Ministry of Education and Science. The FESOM model was made available by Alfred Wegener Institute for Polar and Marine Research (AWI) in Bremerhaven, Germany. NCEP reanalyses were made available by the Physical Science Division of the National Center for Atmospheric Research (NCAR) in Boulder, USA and GME analyses was made available by the German Weather Service (Deutscher Wetterdienst, DWD). AMSR-E data were provided by the University of Hamburg and MODIS thermal infrared satellite data by the U.S. National Aeronautics and Space Agency (NASA).

Polynya situations are captured in FESOM simulations with all forcing fields and the duration of the polynya events are reproduced realistically (Fig. 4a). But during polynya events there is large spreading in the simulations. Due to the particularly well represented dynamics of the polynya area (ice concentration < 70 %), the hourly COSMO data are preferred as model forcing data. Except from the beginning of the melting period in May the progression of ice production correlates with the development of the polynya areas (Fig. 4b). Though the simulation with 6-hourly NCEP 2 reacts extremely sensitively in respect of sea ice production.