Does genetic diversity of *F. vesiculosus* germlings confer resistance towards climate change stress?

Future climate change is simulated at the Kiel Benthocosm

Climate change factors are overlain as a delta-treatment onto naturally fluctuating regimes. A *Fucus vesiculosus* community is exposed to different conditions. Temperature and pCO2 increase simulate the climate change predicted for 2100.

Are Fucus germlings with high genetic diversity doing better under climate change scenarios?

Genetic diversity confers potential for adaptation and is crucial for the conservation in a changing ocean. To explore the significance of genetic diversity during early life, when highest selection occurs, we exposed *Fucus vesiculosus* germlings to increased temperature, pCO2 and nutrients. We hypothesize that diverse genotypes react differently on climate change factors. Performance of the germlings (photosynthetic efficiency & growth) and survival are measured continuously.

Climate change effects on seaweed germlings’ growth depends on season

Higher temperature regimes enhance growth rate in spring and autumn, but lead to a higher mortality during summer. The fertilisation effect caused by high pCO2 is observed only during summer.

Germlings’ photosynthetic parameters are influenced at higher temperatures

The high effective quantum yield (Fv/Fm’) at elevated temperature regimes indicates a better health condition for *Fucus* germlings in spring (p-value < 0.05).

Eutrophication increases survival of Fucus germlings

While a heat wave lead to low survival of germlings, mortality was alleviated in presence of higher nutrient concentrations (p-value < 0.05). Groups with higher genetic diversity presented higher survival than those of lower levels.

Conclusions

- The temperature effect is favourable in spring and autumn but harmful during summer.
- High nutrient level alleviates mortality during the summer heat wave.
- Ocean acidification increases growth during summer due to a fertilisation effect.
- Survival is increased for groups with a high genetic diversity.
- For detecting genotypes selected in diverse populations, microsatellite markers are applied.

Contact: Balsam Al-Janabi (baljanabi@geomar.de)