Source components of the Gran Canaria (Canary Islands) shield stage magmas: evidence from olivine composition and Sr-Nd-Pb isotopes.

Gurenko, Andrey A., Hoernle, Kaj , Sobolev, Alexander V., Hauff, Folkmar and Schmincke, Hans-Ulrich (2010) Source components of the Gran Canaria (Canary Islands) shield stage magmas: evidence from olivine composition and Sr-Nd-Pb isotopes. Contributions to Mineralogy and Petrology, 159 (5). pp. 689-702. DOI 10.1007/s00410-009-0448-8.

[thumbnail of 1055_Gurenko_2010_SourceComponentsOfTheGran_Artzeit_pubid13638.pdf] Text
1055_Gurenko_2010_SourceComponentsOfTheGran_Artzeit_pubid13638.pdf - Reprinted Version
Restricted to Registered users only

Download (823kB) | Contact

Supplementary data:

Abstract

The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6–90.0 mol.% Fo, 1,722–3,915 ppm Ni, 1,085–1,552 ppm Mn, 1,222–3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr–Nd–Pb isotope compositions (87Sr/86Sr = 0.70315–0.70331, 143Nd/144Nd = 0.51288–0.51292, 206Pb/204Pb = 19.55–19.93, 207Pb/204Pb = 15.60–15.63, 208Pb/204Pb = 39.31–39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al. in: Science 316:412–417, 2007) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al. EPSL 277:514–524, 2009), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.

Document Type: Article
Keywords: Canary Islands; Gran Canaria; ODP Leg 157; Olivine; Mantle plume; Peridotite; Pyroxenite; Radiogenic isotopes; Ocean crust; Recycling
Research affiliation: OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-MUHS
Refereed: Yes
Open Access Journal?: No
Publisher: Springer
Projects: Future Ocean
Date Deposited: 27 Apr 2010 12:25
Last Modified: 23 Sep 2019 18:51
URI: https://oceanrep.geomar.de/id/eprint/2790

Actions (login required)

View Item View Item