Enhanced vertical atmosphere resolution improves climate model simulation of tropical Atlantic SST and interannual variability

April 16, 2015, Vienna
OS1.7: Tropical & Subtropical Ocean Circulation, Equatorial to Mid-Latitude Air-Sea Interactions

Jan Harlaß, Mojib Latif, Wonsun Park
jharlass@geomar.de

GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation

Jan Harlaß

Motivation

Model
SST
Precipitation
Equator
Benguela Region
Variability
Summary

Tropical Atlantic SST bias in CMIP 3 & 5

(a) CMIP5-Reynolds
(b) CMIP3-Reynolds
(c) CMIP3-CMIP5
(d) [Xu et al. 2014]
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation

Jan Harlaß

Motivation
Model
SST
Precipitation
Equator
Benguela Region
Variability
Summary

Subsurface temperature bias
1° wide band along the coast

[Figure showing temperature variations across latitude and longitude, labeled CMIP5, CFSR, and CMIP5 - CFSR]

[Xu et al. 2014]
Contours: precipitation bias (mm/day), Vectors: surface wind bias (m/s)

[Richter & Xie 2008]
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation

Jan Harlaß

Motivation
Model
SST
Precipitation
Equator
Benguela Region
Variability
Summary

Higher model resolution
Annual mean SST bias

CM 2.1, ATM: 200 km L24, Ocean: 100km L50

CM 2.5, ATM: 50 km L32, Ocean: 28km L50

[Delworth et al. 2014]
ORCA2

- $2^\circ \times 2^\circ$
- Latitudinal refinement
- 31 levels
- No changes

KIEL CLIMATE MODEL SYSTEM (KCMS)

Atmosphere

ECHAM5

Coupler

OASIS3/4

Ocean circulation

OPA9

Sea ice

LIM2/3

Biogeochemistry

Nucleus for European Modelling of the Ocean (NEMO):

ORCA2 / ORCA05 / ORCA025 / ORCA12 / AGRIF

[Park et al. 2009]
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation

Jan Harlaß

Motivation

Kiel Climate Model (KCM)

Model design

Kiel Climate Model (KCM)

ORCA2

- 2° x 2°
- latitudinal refinement
- 31 levels
- No changes

ECHAM5

- T42 (2.8°, ~300km)
- L31 / L62
- LR / LR_V

GEOMAR Helmholtz Centre for Ocean Research Kiel, DE

[Park et al. 2009]
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation

Jan Harlaß

Model design
Kiel Climate Model (KCM)

ORCA2

- 2° x 2°
- Latitudinal refinement
- 31 levels
- No changes

ECHAM5

- T42 (2.8°, ~300km) L31 / L62 LR / LR_V
- T159 (0.75°, ~80km) L31 / L62 HR / HR_V

GEOMAR Helmholtz Centre for Ocean Research Kiel, DE

Motivation
Model
SST
Precipitation
Equator
Benguela Region
Variability
Summary

[Park et al. 2009]
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation
Jan Harlaß

Motivation
Model
SST
Precipitation
Equator
Benguela Region
Variability
Summary

SST bias
July-September [JAS]
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation
Jan Harlaß

Motivation
Model
SST
Precipitation
Equator
Benguela Region
Variability
Summary

SST bias
July-September [JAS]
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation
Jan Harlaß

Motivation
Model
SST
Precipitation
Equator
Benguela Region
Variability
Summary

Total Precipitation bias
JAS

(a) LR
(b) HR
(c) LR-V
(d) HR-V

GEOMAR Helmholtz Centre for Ocean Research Kiel, DE
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation

Jan Harlaß

Motivation
Model
SST
Precipitation
Variability
Summary

GEOMAR Helmholtz Centre for Ocean Research Kiel, DE

Zonal section along the equator
3° S-3° N, JAS

(a) SST

(c) Zonal wind stress

HadISST
LR
LR_V
HR
HR_V
Temperature bias
5° S-5° N, annual average

Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation
Jan Harlaß

Motivation
Model
SST
Precipitation
Equator
Benguela Region
Variability
Summary

GEOMAR Helmholtz Centre for Ocean Research Kiel, DE
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation

Jan Harlaß

Motivation
Model
SST
Precipitation
Equator
Benguela Region
Variability
Summary
Meridional velocity
Zonally averaged over 3 gridpoints from the coast, annual average

[Xu et al. 2014]
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation

Jan Harlaß

Motivation
Model
SST
Precipitation
Equator
Benguela Region

Interannual variability
Standard deviation of SST in ATL3 (20°W-0°E, 3°S-3°N)

HadISST LR LR_V HR HR_V
Enhanced Vertical Atmosphere Resolution Improves Climate Model Simulation

Jan Harlaß

Motivation
Model
SST
Precipitation
Equator
Benguela Region

Variability
Summary

Regression ATL3 index on SST
JAS, Contours: HadISST, Shading: bias
Summary

- Increased atmospheric **horizontal** resolution reduces Tropical Atlantic SST bias (T42->T159)
- Spatial bias pattern remains
Summary

- Increased atmospheric **horizontal** resolution reduces Tropical Atlantic SST bias (T42->T159)
- Spatial bias pattern remains

- **High** resolution in both the **horizontal** and **vertical** strongly reduced biases in the Tropical Atlantic (T159 L62)
- Improved mean state in the ocean and the atmosphere
- Improved interannual variability
Summary

- Increased atmospheric **horizontal** resolution reduces Tropical Atlantic SST bias (T42->T159)
- Spatial bias pattern remains

- **High** resolution in both the **horizontal** and **vertical** strongly reduced biases in the Tropical Atlantic (T159 L62)
- Improved mean state in the ocean and the atmosphere
- Improved interannual variability

- Consistent choice of horizontal and vertical resolution!
Thank you for your attention!

http://www.geomar.de/~jharlass-e
jharlass@geomar.de
Delworth, T. L., Rosati, A., Anderson, ... (2012). Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model. Journal of Climate, 25(8), 2755–2781. doi:10.1175/JCLI-D-11-00316.1

Xu, Z., Chang, P., Richter, I., ... (2014). Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble. Climate Dynamics, 43(11), 3123–3145. doi:10.1007/s00382-014-2247-9