Reconsidering the role of carbonate ion concentration in calcification by marine organisms

L. T. Bach
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany

Correspondence to: L. T. Bach (lbach@geomar.de)

Received: 30 March 2015 – Published in Biogeosciences Discuss.: 5 May 2015
Revised: 31 July 2015 – Accepted: 4 August 2015 – Published: 19 August 2015

Abstract. Marine organisms precipitate 0.5–2.0 Gt of carbon as calcium carbonate (CaCO3) every year with a profound impact on global biogeochemical element cycles. Biotic calcification relies on calcium ions (Ca2+) and usually on bicarbonate ions (HCO3−) as CaCO3 substrates and can be inhibited by high proton (H+) concentrations. The seawater concentration of carbonate ions (CO32−) and the CO32− dependent CaCO3 saturation state (ΩCaCO3) seem to be irrelevant in this production process. Nevertheless, calcification rates and the success of calcifying organisms in the oceans often correlate surprisingly well with these two carbonate system parameters. This study addresses this dilemma through the rearrangement of carbonate system equations which revealed an important proportionality between [CO32−] or ΩCaCO3 and the ratio of [HCO3−] to [H+]. Due to this proportionality, calcification rates will always correlate as well with [HCO3−]/[H+] as they do with [CO32−] or ΩCaCO3 when temperature, salinity, and pressure are constant. Hence, [CO32−] and ΩCaCO3 may simply be very good proxies for the control by [HCO3−]/[H+], where [HCO3−] serves as the inorganic carbon substrate and [H+] functions as a calcification inhibitor. If the “substrate–inhibitor ratio” (i.e., [HCO3−]/[H+]) rather than [CO32−] or ΩCaCO3 controls biotic CaCO3 formation, then some of the most common paradigms in ocean acidification research need to be reviewed. For example, the absence of a latitudinal gradient in [HCO3−]/[H+] in contrast to [CO32−] and ΩCaCO3 could modify the common assumption that high latitudes are affected most severely by ocean acidification.

1 Introduction

Calcium carbonate (CaCO3) is used by a large variety of marine organisms as structural material for their exo- and endoskeletons. Calcification requires calcium ions (Ca2+) and dissolved inorganic carbon (DIC) substrate, which is present in seawater as carbon dioxide (CO2), bicarbonate ion (HCO3−), and carbonate ion (CO32−). From a purely chemical point of view, calcium reacts with inorganic carbon as

\[\text{Ca}^{2+} + \text{CO}_3^{2-} \rightarrow \text{CaCO}_3. \]

Precipitation is thermodynamically favored when [Ca2+] and [CO32−] reach or exceed the solubility of CaCO3 in seawater. The stoichiometric solubility product is defined as

\[K_{sp} = \left[\text{Ca}^{2+} \right]_{saturated} \left[\text{CO}_3^{2-} \right]_{saturated} \]

and is a function of temperature, salinity, and pressure (Mucci, 1983; Zeebe and Wolf-Gladrow, 2001). The saturation state of CaCO3 (ΩCaCO3) is calculated with seawater concentrations of Ca2+ and CO32− and Ksp as

\[\Omega_{\text{CaCO}_3} = \frac{[\text{Ca}^{2+}]_{\text{seawater}} [\text{CO}_3^{2-}]_{\text{seawater}}}{K^*_{\text{sp}}} . \]

Accordingly, CaCO3 precipitation is thermodynamically favored when the product of [Ca2+]seawater and [CO32−]seawater reaches or exceeds Ksp or ΩCaCO3 ≥ 1. In the oceans, ΩCaCO3 is largely determined by [CO32−] because [Ca2+] is fairly constant in seawater (Kleypas et al., 1999).

Biogenic CaCO3 is mainly present as calcite or aragonite, which have different crystal structures and solubility. Calcite is predominantly formed by coccolithophores, foraminifera,
and some crustaceans, while aragonite is typically found in scleractinian corals. Molluscs can have both calcite and aragonite. Echinoderms and octocorals build calcite with a large fraction of magnesium (Mg) included in the crystal lattice (Mann, 2001). Aragonite is more soluble than calcite which is expressed in an offset between their individual Ω_{CaCO_3} values (Mucci, 1983). This offset, however, is the only major difference in their solubility, and changes in Ω_{aragonite} are very similar to changes in Ω_{calcite} (Zeebe and Wolf-Gladrow, 2001). They are therefore summarized by the term Ω_{CaCO_3} in this study since changes in the saturation state rather than absolute numbers are addressed here.

On the biological level, chemical precipitation of CaCO_3 as defined in Eq. (1) is just the final step in the calcification process. Before precipitation, calcium and inorganic carbon have to be transported in a series of active and/or passive processes until they reach the site of calcification, which is usually located in specialized cellular compartments, tissues, or tissue interfaces. Transport mechanisms and pathways are highly diverse among the various calcifying taxa, which rules out the possibility of formulating a generally applicable calcification model (Mann, 2001). What all calcifiers have in common, however, is their dependency on calcium and inorganic carbon availability in seawater as this is the ultimate common reservoir and be transformed to a potentially important proportionality between [HCO_3^-] and [H^+]: Jokiel, 2013; Jokiel et al., 2014).

The present study builds upon these previous findings and aims to refine the thought that calcification is not controlled by a single carbonate-chemistry parameter but reacts to a combination of two or more. Therefore, attention will be drawn to a potentially important proportionality between [CO_3^{2-}] / [H_2CO_3] and the [HCO_3^-] / [H^+] ratio which was uncovered by rearranging carbonate-chemistry equations. I will discuss (1) how this proportionality could help to understand carbonate chemistry induced changes in CaCO_3 precipitation by marine organisms and (2) how this proportionality could modify the paradigm that high-latitude calcifiers are more susceptible to ocean acidification than species living in low latitudes.

Biogeosciences, 12, 4939–4951, 2015

www.biogeosciences.net/12/4939/2015/
2 Material and methods

2.1 Uncovering the proportionality between $[\text{CO}_3^{2-}]$, or Ω_{CaCO_3}, and the $[\text{HCO}_3^-]/[\text{H}^+]$ ratio

The carbonate system is an equilibrium reaction of the form

$$\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 \leftrightarrow \text{HCO}_3^- + \text{H}^+ \leftrightarrow \text{CO}_3^{2-} + 2\text{H}^+. \quad (4)$$

which can be simplified to

$$\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{HCO}_3^- + \text{H}^+ \leftrightarrow \text{CO}_3^{2-} + 2\text{H}^+ \quad (5)$$

because $[\text{H}_2\text{CO}_3]$ is only about 1/1000 of $[\text{CO}_2]$ and has no special significance for the acid–base equilibria since both species are uncharged (Butler, 1998; Dickson 2010). Hence, $[\text{CO}_2]$ is summarized in the following as

$$[\text{CO}_2] = [\text{CO}_2]_{\text{aq}} + [\text{H}_2\text{CO}_3]. \quad (6)$$

where aq denotes gaseous CO$_2$ dissolved in seawater.

For the description of the carbonate system, the first and second dissociation constants (K_1 and K_2) are expressed in terms of concentrations – i.e., as stoichiometric dissociation constants:

$$K_1^* = \frac{[\text{HCO}_3^-][\text{H}^+]}{[\text{CO}_2]} \quad (7)$$

and

$$K_2^* = \frac{[\text{CO}_3^{2-}][\text{H}^+]}{[\text{HCO}_3^-]}, \quad (8)$$

which are a function of temperature, salinity, and pressure (Zeebe and Wolf-Gladrow, 2001). Solving Eq. (8) for $[\text{HCO}_3^-]/[\text{H}^+]$ as

$$\frac{[\text{HCO}_3^-]}{[\text{H}^+]} = K_2^* [\text{CO}_3^{2-}] \quad (9)$$

shows that $[\text{CO}_3^{2-}]$ is proportional to $[\text{HCO}_3^-]/[\text{H}^+]$ when temperature, salinity, and pressure remain unchanged because K_2^* is constant under these circumstances.

The CaCO$_3$ saturation state of seawater has been defined in Eq. (3). Solving Eqs. (3) and (9) for $[\text{CO}_3^{2-}]$ yields

$$[\text{CO}_3^{2-}] = \frac{\Omega_{\text{CaCO}_3} K_{sp}^*}{[\text{Ca}^{2+}]} \quad (10)$$

and

$$[\text{CO}_3^{2-}] = \frac{[\text{HCO}_3^-] K_{sp}^*}{[\text{H}^+]} \quad (11)$$

Combining these equations and subsequently solving them for $[\text{HCO}_3^-]/[\text{H}^+]$ yields

$$[\text{HCO}_3^-] = \frac{\Omega_{\text{CaCO}_3} K_{sp}^*}{[\text{Ca}^{2+}] K_2^*} \quad (12)$$

It follows that $[\text{HCO}_3^-]/[\text{H}^+]$ and Ω_{CaCO_3} are proportional, under constant T, S, and P. Note that $[\text{Ca}^{2+}]$ is conservative in seawater and therefore scales with salinity.

Figure 1. Change in different surface ocean carbonate-chemistry parameters under “business-as-usual” climate change scenario SRES (Special Report: Emissions Scenarios) A2 with (a) increasing atmospheric $p\text{CO}_2$ and (b) over time. All changes are relative to the preindustrial CO$_2$ partial pressure of ~ 280 µatm. Note that the slight deviations from proportionality between $[\text{CO}_3^{2-}]$, Ω_{CaCO_3}, and $[\text{HCO}_3^-]/[\text{H}^+]$ are the result of changes in global average temperature and salinity in the course of climate change which affect K_2^* and K_{sp}^* (see Sect. 3.5 for further details).

2.2 Carbonate-chemistry calculations

Carbonate-chemistry data presented in Figs. 1–7 were calculated with the MATLAB (the Mathworks) version of CO2SYS (van Heuven et al., 2011) using K_1^* and K_2^* determined by Millero (2010), K_{ISO_4} determined by Dickson (1990), and K_{sp}^* determined by Mucci (1983). $[\text{H}^+]$ (free scale) was subsequently calculated from pH_{free}:

$$\text{pH}_{\text{free}} = -\log[\text{H}^+]_{\text{free}}, \quad (13)$$

as given in (Zeebe and Wolf-Gladrow, 2001).

Surface ocean (0–50 m) carbonate chemistry (DIC, TA), nutrient (PO$_4^{3-}$), salinity, and temperature data used for calculations presented in Figs. 1, 5b, d, and f, and 6 were extracted from a model simulation with the University of Victoria (UVic) Earth System model performed by Taucher and Oschlies (2011). In their study, the model was spun up for 4000 years with preindustrial boundary conditions and then forced with reconstructed CO$_2$ emissions and aerosol dynamics for the period from 1765–2000 (Schmittner et al., 2008). Thereafter, the model was forced with anthropogenic CO$_2$ emissions as predicted in the IPCC A2 (“business-as-usual”) scenario. Note that the data were taken from their reference run (“TEMP”). For further details on the model setup, please refer to the original description by Taucher and Oschlies (2011).
The ratios \([\text{CO}_2^-]/(\text{HCO}_3^-)/[\text{H}^+]\) and \([\text{CO}_3^-]/(\text{DIC}/[\text{H}^+])\) shown in Fig. 3 were calculated with CO2SYS, assuming increasing \(p\text{CO}_2\) at constant total alkalinity (2350 \(\mu\text{mol} \text{ kg}^{-1}\)), phosphate and silicate concentrations to be 0, and \(T, S,\) and \(P\) to be 15 °C, 35, and 0 dbar, respectively.

Sensitivities of \([\text{CO}_2^-], \Omega_{\text{CaCO}_3},\) and \([\text{HCO}_3^-]/[\text{H}^+]\) to changing \(P, S,\) or \(T\) (Fig. 4) were calculated with CO2SYS, assuming phosphate and silicate concentrations to be 0, a constant \(p\text{CO}_2\) of 400 \(\mu\text{atm}\), and a constant TA of 2350 \(\mu\text{mol} \text{ kg}^{-1}\). The parameters that were not varied within the particular calculation were set to constant values of 15 °C, 35, and 0 dbar for \(T, S,\) and \(P\), respectively.

Calcification related measurements and corresponding DIC, TA, \(T, S,\) and nutrient data of experiments with different species (Schneider and Erez, 2006; Gazeau et al., 2011; Keul et al., 2013, Fig. 2) were downloaded from the PANGAEA data server (www.pangaea.de).

Surface ocean (0–100 m) carbonate chemistry, physical, and nutrient data of the meridional Atlantic transect measured during CLIVAR (Climate and Ocean – Variability, Predictability, and Change) cruises in 2003 (Peltola et al., 2003) and 2005 (Wanninkhof et al., 2006; Fig. 5a, c, e) were downloaded from the CARINA (CARbon dioxide IN the Atlantic Ocean) data synthesis homepage (http://cdiac.ornl.gov/oceans/CARINA/). Water-column carbonate chemistry, physical, and nutrient data between 1988 and 2012 from the ALOHA (A Long-term Oligotrophic Habitat Assessment) time-series station (Fig. 7) in the central Pacific (22° 45′N 158°00′W) were downloaded from the ALOHA website (http://aco-ssds.soest.hawaii.edu/ALOHA/).

3 Results and discussion

3.1 Is \(\text{HCO}_3^-\) or \(\text{CO}_3^-\) the more suitable inorganic carbon substrate for calcification?

It is important to determine the calcification-relevant inorganic carbon species taken from seawater in order to understand the calcification response of marine organisms to changing carbonate chemistry. Most studies assume that \(\text{HCO}_3^-\) rather than \(\text{CO}_3^-\) is the key inorganic carbon ion (e.g., Allemend et al., 2004; Mackinder et al., 2010; Stumpp et al., 2012; Taylor et al., 2012). However, proof of this assumption on a physiological level is still missing because attempts to unequivocally determine the inorganic carbon molecule transported by molecular transport systems...
have not been successful so far (Pushkin and Kurtz, 2006; Mackinder et al., 2010; Lee et al., 2013; Romero et al., 2013). Furthermore, the uptake mechanisms for inorganic carbon are highly diverse among the various calcifying taxa so that generalization of physiological principles would be difficult (see Sect. 3.6 for a discussion of this topic). It may therefore be helpful to approach this question differently and ask more generally whether HCO$_3^-$ or CO$_2^-$ would be the more suitable inorganic carbon substrate for calcification. Three different perspectives will be addressed in the following.

3.1.1 Abundance

HCO$_3^-$ is usually the most abundant DIC species in seawater. At a pH$_f$ (free scale) of 8.1 it contributes $\sim 90\%$ to the total DIC pool, while CO$_2^-$ contributes less than 10\%. Thus, molecular CO$_2^-$ transporters would require a 9 times higher affinity to their substrate than HCO$_3^-$ transporters. It may therefore make more sense for an organism to rely on the largest inorganic carbon pool if molecular transporters take the ions directly from seawater (Mackinder et al., 2010).

3.1.2 Homeostasis

The hydration timescale of CO$_2$ (CO$_2$ + H$_2$O \leftrightarrow HCO$_3^-$ + H$^+$) is comparatively slow (\sim 10 s), while the hydrolysis of HCO$_3^-$ (HCO$_3^-$ \leftrightarrow CO$_2^-$ + H$^+$) is fast (\sim 10$^{-7}$ s; Zeebe and Wolf-Gladrow, 2001; Schulz et al., 2006). Assuming a transcellular pathway, selectively incorporated CO$_3^{2-}$ that is transported through cytosol with a typical pH around \sim 7.0–7.4 (Madhus, 1988) would quickly turn into HCO$_3^-$ unless the transfer is faster than 10^{-7} s. In the likely event that the transfer takes longer, CO$_3^{2-}$ would bind a proton in the cytosol and be transported as HCO$_3^-$ to the site of calcification, where the proton would subsequently be released back to the cytosol during CaCO$_3$ precipitation. Hence, the cytosolic pH would remain stable in the case of selective CO$_3^{2-}$ uptake as long as CO$_3^{2-}$ uptake and CaCO$_3$ precipitation occur at the same rate. However, both processes may occasionally run out of equilibrium for short periods. In these cases, the utilization of CO$_3^{2-}$ as an inorganic carbon source would constitute a substantial risk for the organism’s pH homeostasis. Excess CO$_3^{2-}$ uptake would elevate cytosolic pH, while excess CaCO$_3$ precipitation would reduce it. In contrast, a selective uptake of HCO$_3^-$ from seawater would perturb the cytosolic pH to a much smaller extent when HCO$_3^-$ uptake and CaCO$_3$ precipitation are not entirely balanced because HCO$_3^-$ has a relatively low potential to accept or donate H$^+$ at a typical pH of 7.2. It may therefore be easier for calcifiers to keep cytosolic pH stable at \sim 7.2 when using HCO$_3^-$.

3.1.3 Stability

Seawater carbonate-chemistry conditions are relatively stable on longer timescales but can fluctuate substantially on a seasonal and diurnal cycle (Takahashi et al., 1993; Thomsen et al., 2010; Shaw et al., 2013), especially in diffusive boundary layers of organisms (Wolf-Gladrow and Riebesell, 1997; Flynn et al., 2012; Glas et al., 2012a; Agostini et al., 2013). Fluctuations are mostly induced by photosynthetic or respiratory turnover of CO$_2$. The magnitude of fluctuation scales with the productivity of the ecosystem (Schulz and Riebesell, 2013), but fluctuations should usually stay within the \sim 6.5–9 pH range. HCO$_3^-$ is dominant and has a relatively stable concentration in this entire pH range, while [CO$_3^{2-}$] is highly variable. In the habitat of a temperate coralline alga, for example, typical diurnal pH fluctuations can range from \sim 8.4 at day to \sim 7.6 at night (Cornwall et al., 2013). These changes would translate into a moderate difference between day and night of \sim 30 in [HCO$_3^-$] but a pronounced difference of more than 450 \% in [CO$_3^{2-}$]. Hence, HCO$_3^-$ is the much more reliable inorganic carbon source for calcification as it shows significantly smaller variability.

3.2 Relationship between calcification and [CO$_3^{2-}$] or [HCO$_3^-$]/[H$^+$] in existing data sets

If the common assumption holds and marine calcifiers primarily utilize HCO$_3^-$ instead of CO$_3^{2-}$ as CaCO$_3$ substrate (see previous section), then correlations between calcification and [CO$_3^{2-}$] or [HCO$_3^-$]/[H$^+$] are not useful under noncorrosive conditions. Still, these correlations often yield high coefficients of determination (R^2) even if conditions are supersaturated (Schneider and Erez, 2006; Marubini et al., 2008;
of an inorganic carbon substrate and the negative influence of CaCO$_3$. Implicit in the [HCO$_3^-$]/[H$^+$] ratio is the thought that biotic CaCO$_3$ precipitation is balanced by the stimulating influence of an inorganic carbon substrate and the negative influence of an inhibitor (Bach et al., 2011, 2013, 2015; Jokiel, 2011a, b, 2013; Jokiel et al., 2014). Higher [HCO$_3^-$] would stimulate calcification rates as a substrate, whereas high seawater [H$^+$] would inhibit them.

When both [HCO$_3^-$] and [H$^+$] increase, calcification is balanced by the degree of change in these two ions. [H$^+$] increases profoundly under ocean acidification, while [HCO$_3^-$] increases only marginally (Fig. 1; see also Schulz et al., 2009). Here, changing [H$^+$] should be of dominant control (Bach et al., 2011). When increasing [H$^+$] is paralleled by a significant increase in [HCO$_3^-$], the additional bicarbonate could potentially compensate the inhibitory proton effect to some extent (Bach et al., 2015). Indeed, HCO$_3^-$ uptake is a common mechanism to buffer acidosis and might be facilitated at higher HCO$_3^-$ availability (Boron, 2004; Melzner et al., 2009; Stumpf et al., 2012).

The inhibition by high seawater [H$^+$] is tightly linked to the production of CaCO$_3$ from Ca$^{2+}$ and HCO$_3^-$ because calcification is then a source of H$^+$ (Ca$^{2+} + $ HCO$_3^-$ \rightarrow CaCO$_3$ + H$^+$). H$^+$ generated that way would subsequently have to be released back into seawater to avoid acidification at the site of calcification. This removal should be relatively easy when seawater [H$^+$] is low (i.e., pH is high). It could become more difficult, however, when seawater [H$^+$] rises and the inside-out [H$^+$] gradient shrinks (Cyrnak et al., 2015; Jokiel, 2011b; Taylor et al., 2011; Stumpf et al., 2012; Venn et al., 2013).
3.4 Similarities and differences between the DIC/[H+] and the [HCO$_3^-$]/[H+] ratio

In a series of papers Jokiel (2011a, b, 2013) proposed that carbonate chemistry controls calcification rates in corals through the combined influence of DIC (“reactant”) and H$^+$ (“inhibitor”) and noted that favorable carbonate-chemistry conditions are established when the ratio of DIC to [H$^+$] is high. Hence, the underlying thought implicit in the DIC/[H$^+$] ratio is identical to that implemented in the “substrate–inhibitor ratio” defined here as [HCO$_3^-$]/[H$^+$].

Jokiel (2011a, b, 2013) also noted that there is a linear correlation between DIC/[H$^+$] and [CO$_3^{2-}$]. The correlation observed by Jokiel exists because the DIC pool is dominated by HCO$_3^-$ ions under normal pH conditions (see Sect. 3.1.1) and therefore typically follows the same rules as the proportionality between [HCO$_3^-$]/[H$^+$] and [CO$_3^{2-}$] uncovered in Sect. 2.1. However, when the fraction of HCO$_3^-$ in the DIC pool declines, the DIC/[H$^+$] vs. [CO$_3^{2-}$] correlation starts to increasingly deviate from linearity. In the oceans, noticeable deviations start in the pCO$_2$ range below 250–500 µatm, where an exponentially increasing fraction of the DIC pool is present as CO$_3^{2-}$ (Fig. 3). Thus, exchanging DIC/[H$^+$] with [CO$_3^{2-}$] to explain the calcification response to carbonate chemistry (comparable to what has been done in Fig. 2) is not meaningful when pCO$_2$ is below this range. This problem does not exist for the [HCO$_3^-$]/[H$^+$] ratio where the linear relation holds under all carbonate-chemistry conditions as long as T, S, and P are constant (Fig. 3).

Whether the DIC/[H$^+$] ratio proposed by Jokiel (2011a, b, 2013) or the [HCO$_3^-$]/[H$^+$] ratio could be the more meaningful parameter to explain the carbonate-chemistry response of calcification depends on the investigated organism. The DIC/[H$^+$] ratio would be more meaningful if the organism takes up all DIC species in the same proportion as present in seawater while the [HCO$_3^-$]/[H$^+$] ratio would be more appropriate when selective uptake on HCO$_3^-$ occurs (see also Sect. 3.6.4).

3.5 Global implications

The following paragraphs will address to what extent our view of the carbonate-chemistry control of calcification in the oceans could be modified when we consider [HCO$_3^-$]/[H$^+$] rather than [CO$_3^{2-}$] or Ω$_{CaCO_3}$, as the most influential parameter. Before starting the discussion I would like to emphasize, however, that carbonate-chemistry patterns discussed here are just one among other abiotic (e.g., temperature or light) or biotic (e.g., food availability or competition) factors which must also be taken into consideration when trying to understand the patterns of calcification in the oceans.

Figure 7. Change in (a) Ω$_{CaCO_3}$, (b) [CO$_3^{2-}$], and (c) [HCO$_3^-$]/[H$^+$] on a depth gradient at ALOHA time-series station near Hawaii (22°45’N 158°00’W). Compiled data from 1988–2012 which was downloaded from the ALOHA website.

3.5.1 Latitudinal and vertical gradients in [HCO$_3^-$]/[H$^+$], [CO$_3^{2-}$], and Ω$_{CaCO_3}$

The proportionality between [CO$_3^{2-}$], Ω$_{CaCO_3}$, and [HCO$_3^-$]/[H$^+$] derived in Sect. 2.1 is only valid as long temperature, salinity, and pressure are constant and do not alter K$_a$ and K$_{sp}$. If these parameters change, then the proportionality no longer holds and the response of calcification would be different, depending on whether calcifiers react to [CO$_3^{2-}$], Ω$_{CaCO_3}$, or [HCO$_3^-$]/[H$^+$].

The influence of temperature, salinity, and pressure is illustrated in Fig. 4. Increasing pressure has a negative effect on all three carbonate system components. It is most pronounced on Ω$_{CaCO_3}$ and weakest on [CO$_3^{2-}$] (Fig. 4a). Increasing salinity has a positive influence on [CO$_3^{2-}$] and Ω$_{CaCO_3}$ but a negative one on [HCO$_3^-$]/[H$^+$] (Fig. 4b). Its influence, however, is low since salinity gradients in the oceans are generally too weak to be of high relevance in this context. Increasing temperature has a profound positive impact on [CO$_3^{2-}$] and Ω$_{CaCO_3}$ but almost no influence on [HCO$_3^-$]/[H$^+$] (Fig. 4c).

In combination, these factors cause a highly interesting difference of [CO$_3^{2-}$], Ω$_{CaCO_3}$, and [HCO$_3^-$]/[H$^+$] on a latitudinal gradient. While Ω$_{CaCO_3}$ and [CO$_3^{2-}$] decrease 2–3-fold towards the poles, [HCO$_3^-$]/[H$^+$] is almost constant over the same range (Figs. 5, 6). This inconsistency is mostly
due to different temperature sensitivities among the three parameters. Cooler temperatures in high latitudes lead to a higher solubility of CO$_2$, which results in an equilibrium shift away from [CO$_2^-$] towards [CO$_3^{2-}$] and [HCO$_3^-$] (Eq. 4). Accordingly, [CO$_3^{2-}$] declines towards the poles. Ω_{CaCO_3} follows the concentration of CO$_3^{2-}$ since [Ca$^{2+}$] is too stable to be of any relevance. The slight poleward increase in [HCO$_3^-$] is balanced by the concomitant increase in [H$^+$] which explains the stability of [HCO$_3^-$]/[H$^+$] over the latitudinal gradient. Thus, carbonate-chemistry conditions for biotic CaCO$_3$ production would be fairly constant over the entire surface ocean if controlled by [HCO$_3^-$]/[H$^+$], whereas they would show a profound poleward deterioration if determined by [CO$_3^{2-}$] or Ω_{CaCO_3} (Figs. 5, 6).

Vertically, [CO$_3^{2-}$] and Ω_{CaCO_3} decrease more severely than [HCO$_3^-$]/[H$^+$] from the surface to about 1000 m depth (∼5-fold vs. ∼3-fold decrease; Fig. 7). There are two reasons for this. First, the temperature decline, which is strongest in the upper few hundred meters, negatively affects [CO$_3^{2-}$] and Ω_{CaCO_3}, whereas [HCO$_3^-$]/[H$^+$] remains unaffected (Fig. 4c). Second, the increase in [H$^+$] from 0–1000 m due to respiratory CO$_2$ release is paralleled by ∼30% increases in [HCO$_3^-$], which mitigates the decline in [HCO$_3^-$]/[H$^+$]. Below 1000 m, all three carbonate system parameters are relatively stable. Of the three carbonate system parameters considered here, [HCO$_3^-$]/[H$^+$] is the most homogeneous when comparing the development over the entire water column. Thus, the deterioration of carbonate-chemistry conditions for biotic CaCO$_3$ formation with depth would be less pronounced if it was controlled by [HCO$_3^-$]/[H$^+$] (Fig. 7).

3.5.2 Implications for ocean acidification research

The ongoing perturbation of the surface ocean by anthropogenic CO$_2$ causes a decline in Ω_{CaCO_3}, [CO$_3^{2-}$], and [HCO$_3^-$]/[H$^+$]. The magnitude of change in all three parameters is very similar on the global average (Fig. 1). Until 2100 they decrease to about half the value of the year 2000 (Figs. 1, 5). The two different latitudinal patterns for Ω_{CaCO_3}, [CO$_3^{2-}$], or [HCO$_3^-$]/[H$^+$] are, however, conserved in the course of climate change (Fig. 6). Hence, latitudinal differences among the three parameters prevail for longer timescales and are not restricted to the currents status of the carbonate system.

The presence of two highly different latitudinal patterns has important implications for ocean acidification research. Polar regions have been identified as the most severely acidification-affected regions on Earth as they are the first to experience corrosive conditions (i.e., $\Omega_{CaCO_3} < 1$; Orr et al., 2005; Fabry et al., 2009; Hofmann et al., 2010). The vulnerability of high latitudes is therefore explained by an abiotic process – i.e., CaCO$_3$ dissolution. The study presented here deals with controls on the opposite process – i.e., biotic CaCO$_3$ formation. Dissolution is determined by Ω_{CaCO_3} and there is no doubt that polar regions are the most severely affected (see also Fig. 6). From the production perspective, however, this is not necessarily the case. Ocean acidification would be equally harmful in warm-water habitats and in the polar realm in the case of CaCO$_3$ formation being controlled by [HCO$_3^-$]/[H$^+$] and not [CO$_3^{2-}$] or Ω_{CaCO_3}. Thus, when high-latitude organisms find a way to efficiently protect their crystal skeletons from corrosive seawater, they may not be more vulnerable to ocean acidification than their warm-water counterparts.

3.6 Limitations and uncertainties

This study has argued that a substrate–inhibitor ratio like [HCO$_3^-$]/[H$^+$] (or DIC/[H$^+$]; Jokiel, 2011a, b, 2013) could be a useful measure to assess which carbonate-chemistry conditions could be favorable for calcification. However, it must also be recognized that such a rather general view of the carbonate-chemistry control of calcification has its limitations at a more detailed physiological level. Calcification follows an enormous variety of pathways among the different taxa, with distinct inorganic carbon uptake mechanisms and distinct sensitivities to H$^+$. Thus, the capability of the substrate–inhibitor ratio to predict calcification rates can always be confounded by taxon-specific physiological features. The most important limitations and uncertainties for the ability of [HCO$_3^-$]/[H$^+$] to serve as a predictor variable for the carbonate-chemistry control of calcification will be discussed in the following.

3.6.1 Corrosive conditions – accounting for the difference between gross and net calcification

When discussing the influence of carbonate chemistry on calcification, a distinction needs to be made between the formation and dissolution of CaCO$_3$ since these two processes are possibly controlled by different carbonate-chemistry parameters. The roles of CaCO$_3$ formation and dissolution are incorporated in the terms gross and net calcification. The former exclusively refers to the precipitation of CaCO$_3$, whereas the latter accounts for both precipitation and dissolution. The ratio of [HCO$_3^-$]/[H$^+$] cannot potentially be very useful to determine gross calcification, which equals net calcification under noncorrosive conditions (i.e., $\Omega_{CaCO_3} > 1$). When Ω_{CaCO_3} falls below 1, however, the control of [HCO$_3^-$]/[H$^+$] on gross calcification would be obscured by the abiotic influence of Ω_{CaCO_3} on dissolution. Accordingly, corrosive conditions would require a consideration of both [HCO$_3^-$]/[H$^+$] and Ω_{CaCO_3} in order to correctly estimate the impact of carbonate chemistry on net biotic CaCO$_3$ formation.

Areas with corrosive conditions will expand under ocean acidification (Orr et al., 2005) so that CaCO$_3$ dissolution becomes a more widespread problem for future calcifiers. However, dealing with the dissolution of CaCO$_3$ is only of sec-
ondary relevance for living organisms as everything that dissolves needs to be formed in the first place. Hence, although dissolution processes cannot be left unconsidered, it is reasonable from a biological point of view to focus on the processes that control the formation of CaCO$_3$.

3.6.2 Applicability of [HCO$_3^-$] / [H$^+$] in the geological record

The restriction of [HCO$_3^-$] / [H$^+$] to gross calcification rates (see previous section) limits its applicability in the geological record because the information on CaCO$_3$ accumulation conserved in the sediments is not only affected by gross calcification but also by post-production dissolution and abiologic modifications of CaCO$_3$ during diagenesis, which are both controlled by ΔCaCO$_3$. Thus, in order to verify the substrate-inhibitor concept for the geological record we would need a reliable proxy for exclusively biotic gross calcification. Conversely, the application of ΔCaCO$_3$ to explain trends in CaCO$_3$ sedimentation (e.g., Hönisch et al., 2012; Ridgwell, 2005) would be reasonable because sedimentation involves both precipitation and dissolution and ΔCaCO$_3$ is a good indicator of the former (under constant T, S, P) and the key parameter for the latter.

3.6.3 Extreme concentrations of HCO$_3^-$ and H$^+$

In some studies, calcification rates correlated better with [HCO$_3^-$] than with [CO$_2^-$] (and thus [HCO$_3^-$] / [H$^+$]; Bach et al., 2013; Jury et al., 2010), which challenges the potential of [HCO$_3^-$] / [H$^+$] to serve as predictor variable for CaCO$_3$ production. However, the dominant control on HCO$_3^-$ in these particular studies can be easily understood when considering the low HCO$_3^-$ concentrations at which its dominance actually occurred. The influence of [HCO$_3^-$] relative to [H$^+$] will become more and more influential under conditions where HCO$_3^-$ becomes increasingly limiting. Conversely, any influence of [HCO$_3^-$] will become negligible when the organism is fully saturated with it. Under these circumstances calcification is most likely primarily controlled by [H$^+$] (Bach et al., 2011; Jokiel 2011b; Taylor et al., 2011). Thus, the potential of [HCO$_3^-$] / [H$^+$] in predicting calcification is low at rather “extreme” carbonate-chemistry conditions where the influence of either HCO$_3^-$ or H$^+$ strongly outweighs the other. Its potential should be high, however, under conditions where the investigated organism is responsive to both [HCO$_3^-$] and [H$^+$].

3.6.4 Transport of seawater

Some foraminifera and coral species have been reported to transfer calcification-related ions to the site of CaCO$_3$ precipitation by means of seawater transport (Bentov et al., 2009; de Nooijer et al., 2009; Gagnon et al., 2012; Tambutté et al., 2012). In the case of foraminifera, seawater is engulfed in membrane vesicles, transported to the site of calcification, and on its way alkalinized to increase [CO$_2^-$] (Bentov et al., 2009; de Nooijer et al., 2009). In the case of corals, seawater (or at least its constituents smaller than 20 nm; Tambutté et al., 2012) may pass epithelia and reach the CaCO$_3$ skeleton via the paracellular pathway. For both processes (seawater endocytosis and seawater leakage along the intercellular space), all DIC species are potential inorganic carbon sources to fuel calcification. Hence, for organisms which purely rely on seawater endocytosis or leakage, the DIC : [H$^+$] ratio proposed by Jokiel (2011a, b, 2013) could be more appropriate to explain the calcification response to carbonate chemistry than [HCO$_3^-$] / [H$^+$].

3.6.5 CO$_2$ as an inorganic carbon source for calcification

Some organisms receive significant amounts of inorganic carbon used for calcification from respiratory sources (Pearse, 1970; Erez, 1978; Sikes et al., 1981; Tanaka et al., 1986; Furla et al., 2000). Here, organisms do not exclusively rely on direct inorganic carbon utilization from seawater but supplement calcification to a variable degree with CO$_2$ gained intracellularly from respired biomass. This CO$_2$ utilization may be further strengthened (1) when metabolic CO$_2$ is “trapped” inside the organisms through the establishment of pH gradients, which limit the diffusive loss of CO$_2$ (Bentov et al., 2009, Glas et al., 2012b), or (2) when CO$_2$ is transported actively towards the site of calcification (de Nooijer et al., 2014). Thus, CO$_2$ reacting with H$_2$O to form HCO$_3^-$ and H$^+$ (catalyzed by the ubiquitous enzyme carbonic anhydrase) could be an alternative inorganic carbon source for calcification in particular taxa. The potential control of seawater [HCO$_3^-$] / [H$^+$] on CaCO$_3$ precipitation may therefore be weakened by the degree to which calcifiers utilize CO$_2$ as an inorganic carbon source.

3.6.6 Photoautotrophic calcifiers

Photoautotrophic calcifiers such as coccolithophores or zooxanthellate corals not only interact with HCO$_3^-$ and H$^+$ but also with CO$_2$. Photosynthetic and calcification-related processes are physiologically coupled within photoautotrophs (Paasche, 2002; Allemand et al., 2004). Accordingly, calcification rates will be affected indirectly when photosynthesis is CO$_2$ limited (Bach et al., 2015). A valuable measure to determine the potential of CO$_2$ to limit growth and photosynthesis is $K_{1/2}$ which denotes the CO$_2$ concentration where the process runs at half of its maximum. Available $K_{1/2}$ measurements suggest that CO$_2$ limitation mostly occurs well below CO$_2$ concentrations typically encountered by the organisms in their respective habitats (Rost et al., 2003; Sett et al., 2014). Thus, its influence should rarely interfere with the influence of [HCO$_3^-$] / [H$^+$] under natural conditions.

www.biogeosciences.net/12/4939/2015/ Biogeosciences, 12, 4939–4951, 2015
4 Conclusions

A variety of studies highlighted that carbonate chemistry controls calcification through the balance of stimulation by an inorganic carbon substrate (HCO$_3^-$ or DIC) and inhibition by protons (e.g., Bach et al., 2011; Jokiel, 2011a; Thomsen et al., 2015). Other studies found that [CO$_3^{2-}$] or Ω_{CaCO_3} are the carbonate-chemistry parameters which best predict calcification (e.g., Schneider and Erez, 2006; de Putron et al., 2011; Gazeau et al., 2011; Waldbusser et al., 2014). The proportionality between [CO$_3^{2-}$] or Ω_{CaCO_3} and the [HCO$_3^-$]/[H$^+$] ratio derived in Eqs. (9) and (12) provide the chemical basis to reconcile these conflicting results. Every correlation between calcification and [CO$_3^{2-}$] or Ω_{CaCO_3} will be identical to the corresponding correlation with [HCO$_3^-$]/[H$^+$] when T, S, and P are stable. Thus, the good correlations with [CO$_3^{2-}$] and Ω_{CaCO_3} that have previously been reported may have simply masked the combined influence of [HCO$_3^-$] and [H$^+$] (see also findings by Jokiel, 2011a, b, 2013; Jokiel et al., 2014), which are arguably the physiologically more meaningful parameters to correlate gross calcification with (Bach et al., 2013; Jokiel, 2013; Thomsen et al., 2015; Sects. 3.1 and 3.3).

Accounting for the influence of [HCO$_3^-$]/[H$^+$] in controlling CaCO$_3$ formation would also have interesting implications for how we assess carbonate-chemistry conditions and calcification along a latitudinal gradient. A comparison of present and future [CO$_3^{2-}$], Ω_{CaCO_3}, and [HCO$_3^-$]/[H$^+$] patterns in the surface ocean revealed a strong poleward decline in [CO$_3^{2-}$] and Ω_{CaCO_3} but no decline in [HCO$_3^-$]/[H$^+$]. These highly different latitudinal patterns are conserved during climate change. Thus, it may turn out that ocean acidification is globally a more uniform problem for biotic CaCO$_3$ formation than previously thought.

Acknowledgements. I thank Kai Schulz and Ulf Riebesell for our frequent discussions about carbonate chemistry and calcification, which led to the preparation of this manuscript. I am also grateful to Toste Tanhua for support on CARINA data, Jan Taucher for sharing the UVic model output, and Allanal Paul and Jan Taucher for proofreading the manuscript. This study profited from the motivating and constructive reviews by Lennart de Nooijer, Paul Jokiel, and two anonymous reviewers. It was funded by the Federal Ministry of education and research (BMBF) in the framework of the Biological Impacts of Ocean Acidification II (BIOACID II) project (W.P. 1.3).

The article processing charges for this open-access publication were covered by a Research Centre of the Helmholtz Association.

Edited by: J. Middelburg

References

De Putron, S. J., McCorkle, D. C., Cohen, A. L., and Dillon, A. B.: The impact of seawater saturation state and bicarbonate ion con-
Dickson, A. G.: Standard potential of the reaction: AgCl (s) + 2 H\(^+\) (aq) = Ag (s) + HCl (aq), and the standard acidity constant of the ion HSO\(_4^-\) in synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, 1990.

