Text S1: Auxiliary Material to “N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment”

Annie Bourbonnais, School for Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, MA, USA

Mark A. Altabet, School for Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, MA, USA

Chawalit N. Charoenpong, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.

Jennifer Larkum, School for Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, MA, USA

Haibei Hu, School for Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, MA, USA

Hermann W. Bange, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Lothar Stramma, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Background excess [N$_2$] calculation (supplement to section 2.4.2):

Background excess [N$_2$] ([N$_2$]$_{\text{excess,bkgd}}$) was derived from the relationship between [N$_2$]$_{\text{excess}}$ and potential density (σ) at a background station unaffected by N-loss ([O$_2$]>10 µmol L$^{-1}$) located north of the OMZ (1.67°N, 85.83°W) sampled during the M90 cruise (Figure S1):

$$[N_2]_{\text{excess_bkgd}} (\mu\text{mol L}^{-1}) = 1 \times 10^{-9} e^{0.84\sigma}$$

Background excess [N$_2$] ([N$_2$]$_{\text{excess_bkgd}}$) calculated with this equation agreed fairly well with the one derived in Chang et al. (2010) for the ETSP, with differences generally <1.5 µmol L$^{-1}$.

Reference

Figure S1. $[\text{N}_2]_{\text{excess}}$ versus σ at a background station unaffected by N-loss located north of the OMZ (1.67°N, 85.83°W) sampled in November 2012 (M90 cruise).