Abstract
Alignments of fractures and cracks in marine sediments may be controlled by various mechanisms such as horizontal compaction and extension and basement faulting. The orientation of these alignments can be estimated through analyses of S-wave splitting. If sensors in ocean-bottom observations are deployed through free fall, sensor orientation needs to be determined in order for the recorded data to be used for such analyses. Here, we estimate the sensor orientation from the linear particle motions of P-to-s (Ps) phases converted at the sediment–basement interface and also from T waves that are excited by earthquakes and propagate in the seawater. We examine waveforms of local earthquakes recorded by 32 ocean-bottom seismometers (OBSs) that were deployed through free fall for three months in 2010 off Vancouver Island where the strike-slip Nootka fault zone (NFZ) intersects the deformation front of the Cascadia subduction zone. Because the particle motion of the Ps wave was corrected by estimating splitting parameters, the fast polarization direction, which reflects S-wave anisotropic structure within the sediment, can also be evaluated. Consequently, we could estimate the fast polarization direction at OBSs deployed near the NFZ and west of the deformation front. The obtained fast directions appeared to correspond to alignments of shear fractures in the marine sediments associated with the left-lateral motion of the fault in the basement along the NFZ, margin-normal cracks due to horizontal compression west of and slightly away from the deformation front, and frontal thrust faults within the accretionary prism near the deformation front.

Introduction
The left-lateral Nootka fault zone (NFZ) off Vancouver Island (Fig. 1) intersecting the northern Cascadia subduction zone developed as a result of the fragmentation of the Juan de Fuca plate at 3–4 Ma (e.g., Riddihough, 1984; Braunmiller and Nábělek, 2002). This fault zone is currently the boundary between the Explorer microplate and Juan de Fuca plate (Fig. 1a; Hyndman et al., 1979). Both plates subduct beneath the North American plate, accreting marine sediments of the Cascadia basin to the continental margin. Seismic survey results indicate significant differences in the sediment structure between the two sides of the Cascadia deformation front. Normal faults are present in the Cascadia basin (e.g., Nedimović et al., 2009), whereas margin-parallel thrusts and folds have formed in the accretionary prism (e.g., Yuan et al., 1994). The structural fabrics can be evaluated by determining the anisotropic structure of the sediments; fast polarization of the S wave is expected to be in the general direction of cracks, fractures, and faults. The anisotropic structure of marine sediments can be estimated using ocean-bottom seismometers (OBSs). From July to September 2010, the Seafloor Earthquake Array–Japan–Canada Cascadia Experiment (Se Jade) project (e.g., Scherwath et al., 2011) deployed 32 OBSs off Vancouver Island with a station spacing of 15–20 km (Fig. 1a). The horizontal orientations of the OBSs, which contain gimbal-mounted short-period sensors (4.5 Hz) with three components, are unknown because they were deployed through free fall. Using the travel times of local earthquakes recorded by these OBSs, Obana et al. (2015) determined the locations of about 1200 earthquakes that occurred during the observation period (Fig. 1). Their results showed high-seismic activity in the NFZ but low activity in the Cascadia basin and along the northern Cascadia subduction zone. These results confirmed what had been deduced from previous land-based seismic monitoring, but with higher reliability.

If sensor orientation information can be obtained, additional waveform-based analyses can be performed, particularly by employing S waves and surface waves. For broadband OBSs, the horizontal orientation of the instruments can be determined using several kinds of seismic waves, including P waves (Wolf et al., 2009; Leahy et al., 2010; Stachnik et al., 2011).
and Rayleigh waves (Stachnik et al., 2012) from teleseismic events, and Rayleigh waves from ambient noise correlation (Zha et al., 2013). Using airgun shots for seafloor observation, the horizontal orientation of both short-period and broadband OBSs can be estimated from the locations of sources and OBSs (Duennebier et al., 1987; Haacke and Westbrook, 2006; Haacke et al., 2009; Tsuji et al., 2011; Fujie et al., 2013). However, because the SeaJade observations are based on short-period sensors without airgun shot records, the above methods cannot be applied. For the SeaJade project, Shan et al. (2012) determined the horizontal orientation of OBSs using T phases that are generated by earthquakes near the coast and propagate within seawater. Because the particle motion of the T phase, which emerges in the two horizontal components of OBSs, is almost linear and its direction corresponds to that from the source to the OBS, the sensor orientation can be estimated. However, this technique has an ambiguity of π in the estimated sensor orientation because of the unclear onset and polarity of the T phase.

In this article, we introduce a three-step method for determining the horizontal orientation of an OBS using P-to-s (Ps) waves from near-field earthquakes converted at the sediment–basement interface (Fig. 2a). We estimate the splitting parameters of the Ps waves so that the anisotropic structures within the sediment can also be evaluated.

Seismic Observation

From the ~1200 earthquakes reported by Obana et al. (2015), we selected waveforms showing both a clear P wave in the vertical component and a Ps-converted wave in the two horizontal components at 2–8 Hz frequencies. We then handpicked the arrival times of the two waves. As a result, a total of 1732 waveform sets were collected from all available OBSs. In subsequent sections, we describe the characteristics of the observed P and Ps waves as well as the selection of events relevant to P waveforms.

P-Wave Observation

Recording of sufficient waveforms depended primarily on the locations of the deployed OBSs. The OBSs in the northern part of the array recorded a sufficient number of clear waveforms of P waves from small- and moderate-sized earthquakes that occurred near the NFZ. In the southern part of the array, clear P waves were recorded by several OBSs west of the deformation front, but not east of it on the accretionary
prism. Figure 3 compares P waveforms at OBSs west and east of the deformation front for three earthquakes that occurred in the NFZ. The P waves reached the southern part of the array west of the deformation front but did not reach OBSs on the accretionary prism and more than 100 km away.

Figure 4 shows the normalized amplitudes of noise spectra at eight OBSs in the southern part of the array (Fig. 1b). The noise spectra were calculated from seafloor acceleration, which were converted from the seafloor velocity observed at the OBSs for a duration of 600 s (10 min), and then averaged over a 5-day period (10–14 July 2010). Because instrumental response was not known, we took the logarithm of raw amplitudes in the digital count at each OBS and normalized them with the maximum logarithmic amplitude of all the eight OBSs. As a result, at 2–8 Hz frequencies, the noise level in the accretionary prism is significantly higher than west of the deformation front except for at one OBS site.

The reasons why few P waves and such high noise levels were observed on the accretionary prism remain unclear. One possibility is that the background wavefield at this frequency band (2–8 Hz) in the accretionary prism is dominated by acoustically coupled Rayleigh waves (Ewing et al., 1957). These Rayleigh waves mainly propagate in the ocean-crust system and are excited by fluid disturbances (Longuet-Higgins, 1950; Kibblewhite and Evans, 1986) and/or by small-sized earthquakes as reported for the Nankai subduction zone of Japan (Tonegawa, Fukao, Takahashi, et al., 2015). In the ambient seafloor noise observed in the vertical component of OBSs, the acoustic wave propagating within the seawater is dominant at frequencies higher than 5 Hz (e.g., Butler, 2006), whereas Rayleigh waves propagating mainly in the solid earth due to microseisms were observed at frequencies lower than 0.2 Hz (e.g., Webb, 1998). The acoustic Rayleigh wave is a coupled wave that propagates in seawater and sediment and is dominant in seafloor noise at frequencies between the acoustic wave and Rayleigh wave. The relatively high noise level east of the deformation front may indicate that acoustic Rayleigh
waves are excited incessantly by local microseisms and/or small-sized earthquakes in the NFZ and propagate in the accretionary prism to obscure the P waves of near-field earthquakes.

Selection of P Waveforms

We used P waveforms for events that mainly occurred near the NFZ. Obana et al. (2015) indicated that earthquakes along the fault zone occurred in both the oceanic crust and uppermost mantle. When P waveforms from earthquakes occurring within the oceanic crust are used, extra care should be exercised because the wavetrain can have multiple phases due to different propagation paths. The occurrence of multiple P paths depends on the source mechanism, epicentral distance, and focal depth relative to the Moho depth near the source. In this study, we selected only impulsive P waves (Fig. 5) in order to avoid significant contaminations of multipath P waves.

Ps-Converted Wave Observation

In this study, we focus only on the regions near the NFZ and the array area west of the deformation front. Figure 5 shows waveform examples of P and Ps waves at stations S005, S008, and S025. Stations of S008 and S025 are located on the NFZ, and the other station of S005 is farther south but west of the deformation front (Fig. 1b). As shown in Figure 5b, c,e,f,h,i, the horizontal components clearly display the first Ps-converted waves 1–2 s after the P arrival with a similar slowness to that of the P wave. Ps delay times of 1–2 s and around 2 s could be observed at stations east and west of the deformation front, respectively. These waveforms also appear to show the secondary and later Ps-converted waves, which potentially originate from deeper seismic interfaces.

We think that the Ps wave in our observations, which arrived earliest after the P wave with a differential travel time of 1–2 s, is generated primarily at the base of the sediment

Figure 4. Relative noise spectra at eight OBSs within the two boxes in Figure 1b. The gray lines correspond to the noise spectra at OBSs indicated by circles within the left box in Figure 1b. The black lines represent those at OBSs indicated by triangles within the right box in Figure 1b. The region within the dashed-line box indicates the frequency band of 2–8 Hz.

Figure 5. Waveform examples of P and Ps waves at 2–8 Hz frequencies. (a) Waveforms in the vertical component at station S005 as a function of the epicentral distance, which are aligned by handpicked P arrival times. Zero time indicates the P arrival time. (b,c) Same as (a) but for the horizontal components H1 and H2. The arrows indicate the Ps arrivals. (d–f) Same as (a–c) but at station S008. (g–i) Same as (a–c) but at station S025.
layer (top of oceanic crust), because this interface has the largest impedance contrast below the seafloor according to multichannel seismic (MCS) reflection results relevant to the Juan de Fuca plate west of the deformation front (e.g., Yuan et al., 1994; Hasselgren and Clowes, 1995; Nedić et al., 2009). Because we did not use the SeaJade data to estimate velocity models in this region, we can only use the differential travel time to infer that the conversion is indeed at the sediment–basement interface.

MCS reflection surveys indicate that the sedimentary sequence on the northern Juan de Fuca plate is generally flatlying and undisturbed. Its thickness in this region varies from 200 m in the western part of the plate to 1600 m in the eastern part (Hasselgren and Clowes 1995) and becomes 2.0–2.5 km just seaward of the deformation front (Yuan et al., 1994). Dash and Spence (2011) reported that V_p and V_S for unconsolidated sediments with no hydrates or free gas are 1.6–1.8 km s^{-1} and 0.3–0.8 km s^{-1}, respectively. Ruan et al. (2014) reported similar V_S values for the sediment on the Juan de Fuca plate. Riedel et al. (2014) reported V_S values of up to 0.7 km s^{-1} in the upper 300 m at the frontal thrust fault east of the deformation front. Based on these previous studies, we used a V_p of 1.7 km s^{-1} and V_S of 0.7 km s^{-1}. The obtained converted depths of 1.19 and 2.38 km, for P–Ps differential travel times 1 and 2 s, respectively, are consistent with previously reported depths of the sediment base.

Processing

Estimation of the OBS Orientation for Isotropic and Anisotropic Cases

In this section, we describe how we determine both the horizontal orientation of OBSs and the fast polarization direction within marine sediments using Ps waves converted at the sediment–basement interface. If the sediment layer is isotropic, it is straightforward to estimate the horizontal orientation of the OBS. For each earthquake, P and Ps waves appear in the vertical and radial (i.e., epicenter to OBS) components, respectively. Therefore, by synthesizing the waveform for every direction and by multiplying the two horizontal components with the rotation matrix, we can determine the radial direction in which the cross-correlation coefficient between the P and the Ps waves is maximum (Fig. 2b). Using the back-azimuth (BAZ) information, the horizontal orientation of OBS can be estimated on the basis of the radial direction. However, if the marine sediment is anisotropic, Ps wave converted at the base of marine sediments is split into fast and slow polarization axes (Fig. 2c). In such a case, we can correct the split Ps wave using splitting parameters; that is, the differential travel time δt between fast and slow shear waves and the direction θ at which the cross-correlation coefficient between the two horizontal components is maximum. Because the corrected particle motion of the Ps wave is primarily in the radial direction, as will be verified in the Synthetic Tests section, the horizontal orientation of the OBS can be estimated in the same way as for isotropic sediment.

Procedure of Estimating OBS Horizontal Orientation and Fast Polarization Direction

Step 1: Estimation of the Splitting Parameters δt and θ

The horizontal component H1 is in the direction φ (unknown parameter), measured clockwise from north (Fig. 2d), and H2 = H1 + π/2. First, we can estimate the splitting parameters δt and θ using the traditional cross-correlation method with a grid search (Bowman and Ando, 1987). The time window is 0.5 s from the handpicked Ps arrival time, and the search range of δt is −0.06 to 0.06 s for the H2 component relative to the H1 component. This time-window range was determined by checking several events at every OBS site. When C_1 > 0.9 and |δt| > 0.01 s, in which C_1 is the cross-correlation coefficient, we can correct the particle motion of Ps waves by rotating the waveforms by δt from H1/H2 to H1’/H2’ and time-shifting H2’ by δt. The material beneath a station is considered isotropic if C_1 > 0.9 and |δt| ≤ 0.01 s. We use the waveform data to estimate the horizontal orientation of the OBS only.

Step 2: Estimation of the Direction of the Corrected Ps wave

H1’ is now oriented at φ + θ. If δt is positive, H1’ is the fast polarization direction, and vice versa. The corrected particle motion defined by H1’ and H2’ should be almost linear because we have selected Ps waveforms with C_1 > 0.9. We can then solve the eigenvalue problem with respect to the particle motion in the H1’ and H2’ systems. The first eigenvector with the largest eigenvalue represents the primary direction of the particle motion of the Ps wave. Using the H1’ and H2’ components of the first eigenvector v_1 and v_2, the angle ξ between the azimuth of the particle motion and H1’ can be estimated from the following relation (Fig. 2e):

\[ξ = \arctan(v_2/v_1). \]

(1)

Thus, the direction of the corrected Ps wave can be described by φ + θ + ξ. Using the estimated eigenvalues λ_1 and λ_2, the degree of rectilinearity L of the particle motion can be described by

\[L = 1 - (λ_2/λ_1) \]

(2)

(Jurkevics, 1988). If L < 0.90, we discard the waveform.

Step 3: Determination of the Two Directions

The BAZ ψ of an event is also measured clockwise from north. A key point is that the direction φ + θ + ξ discussed above inherently corresponds to either ψ or ψ + π. To remove the ambiguity of π, we can use the cross-correlation coefficient
direction is usually valid. We first examine whether an anisotropic medium with a tilted symmetry axis produces an observable deviation for the corrected particle motion of P_s waves (e.g., Savage, 1998; models A–C in Table 1). In addition, we test the following three situations: (1) in model D in Table 1, both P and S anisotropies are present. P-to-SH conversion occurs, and the particle motion of P_s wave right after the conversion at the sediment–basement interface deviates from the radial direction (Levin and Park, 1997, 1998; Savage, 1998; Liu et al., 2015). (2) Model E in Table 1 features ray bending of direct P wave due to seismic-velocity anomalies between sources and receivers (Hu and Menke, 1992), and (3) in model F in Table 1, P_s conversion occurs at a dipping sediment–basement interface (Langston, 1977; Cassidy, 1992). These situations potentially give rise to systematic variations of the splitting parameters with BAZs.

To assess the effectiveness of the proposed method and the possible effect of the rotation of particle motion on splitting measurements in situations mentioned above, we conducted a synthetic experiment using a 3D finite-difference approach. The 3D model has rotated staggered grids with second-order calculation accuracies in time and space (Saenger et al., 2000) with time steps of 0.002 s. The model space (x–y–z) was $15 \times 15 \times 25$ km3 and included four layers with a grid spacing of 0.02 km (Fig. 7a). An absorbing boundary condition was assigned at each side (Clayton and Engquist, 1977) except for the top. The location of the station was set to $(x, y, z) = (7.5, 7.5, 2.0)$ at the model seafloor. Table 2 summarizes the physical parameters of the model. We conducted a total of 24 calculations for each model. For each calculation, we changed the BAZ by 15°, while keeping the depth of the source and its horizontal distance from the center of the model $(x, y) = (7.5, 7.5)$ at 18 and 5.3 km, respectively. Thus, the 24 calculations covered the entire BAZ range of $0° \leq \psi \leq 360°$, as shown in Figure 7b. We applied an explosive source with a Ricker wavelet at a center frequency of 1.96 Hz (maximum frequency of 2.83 Hz) to the source locations. Because the minimum velocity was 1.0 km s$^{-1}$, the simulation could be conducted under the condition of 17 grids per minimum wavelength at our maximum frequency of 2.83 Hz, which led to sufficiently stable calculations (e.g., Krüger et al., 2005; Bohlen and Saenger, 2006). In the experiments, we set $\psi = 30°$.

For the sediment layer of models A–C and E–F, we set anisotropies $dV_P = 0%$ and $dV_S = -4\%$, equivalent to $B = 0%$ and $E = -4\%$, in which B and E are dimensionless parameters representing anisotropic perturbations of P and S waves in a weak hexagonal symmetry, respectively (Park and Yu, 1992). For model D, we set $dV_P = -4\%$ and $dV_S = -4\%$ (Fig. 7a; Table 1). Because the delay time is small (<0.07 s), we only considered a weakly anisotropic (4%) sediment layer. The degree of anisotropy in the hexagonal symmetry can be converted to elastic constants (Park and Yu, 1992; Nagaya et al., 2008), and a maximum of 21 elastic constants were incorporated. Table 1 also shows other parameters. S_1 is the azimuth of this axis measured clockwise
from the x direction, and S_2 is the tilt angle of the symmetry axis measured from the downward direction (Fig. 7c). In model E, we assigned a dip of 3° to the sediment–basement interface in order to address the reported dip of the oceanic basement of 3°–4° (Hyndman et al., 1990; Hyndman, 1995) landward of the deformation front off southern Vancouver Island. These parameters represent a sediment layer with a fast axis in the y direction.

Figure 8a shows the three-component synthetic seismograms for model A as a function of ψ, which represents P wave, Ps wave converted at the sediment–basement interface, and Ps wave converted at the crust–mantle boundary (oceanic)

\[\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Model} & dV_P(\%) & dV_S(\%) & S_1(\degree) & S_2(\degree) & dV(\%) & \text{Sediment Dip(\degree)} \\
\hline
\text{Model A} & 0 & -4 & 0 & 90 & 0 & 0 \\
\text{Model B} & 0 & -4 & 0 & 70 & 0 & 0 \\
\text{Model C} & 0 & -4 & 0 & 40 & 0 & 0 \\
\text{Model D} & -4 & -4 & 0 & 90 & 0 & 0 \\
\text{Model E} & 0 & -4 & 0 & 90 & -10 & 0 \\
\text{Model F} & 0 & -4 & 0 & 90 & 0 & 3 \\
\hline
\end{array} \]
incidence angles are used, model D, which accounted for the effect of anisotropies. The estimates of the H1 direction, fast direction, and canted on the anisotropic sediment with a tilted symmetry axis.

search range of the time shift for cross correlation in steps calculated for model A. The estimated fast polarization directions for all the BAZs sinusoidally fluctuate around 30° for the wave and 4.1–4.7 s for the Ps wave, we estimated the direction of H1, the fast polarization direction, and δt. The search range of the time shift for cross correlation in steps (1) and (3) was within ±0.3 s.

We applied the proposed method to synthetic waveforms calculated for model A. The estimated fast polarization directions for all the BAZs are estimated to 90° with a sinusoidal fluctuation of ±1° (black circles in Fig. 8d). However, for BAZs that coincide with the fast or slow polarization directions (Fig. 8b), no splitting Ps waves occur. The H1 directions for all the BAZs sinusoidally fluctuate around 30° by ±3° (black circles in Fig. 8b). This implies that the method through steps (1) and (3) can still estimate the H1 direction for anisotropic sediment even if the direction of the incoming Ps wave coincides with a polarization direction. Similar results, consistent with the theoretical values, are seen for models B and C that contain an anisotropic sediment layer with the tilted symmetry axes of 70° and 40°, respectively (gray and white circles in Fig. 8b). When the hexagonal symmetry axis tilts less than 30° from vertical, the estimated directions tend to be scattered (Nagaya et al., 2008). Moreover, the obtained δt for model A shows good agreement with the theoretical differential time of 0.08 s for BAZs in which the Ps wave is split and is 0 s when the BAZ coincides with a polarization direction (black circles in Fig. 8f). For the models of tilted symmetry axes (models B and C in Table 1), the estimated |δt| tends to be small and fluctuates with BAZ with smaller S2, S3, and δt is zero if the symmetry axis is vertical. This implies that if Ps waves are split at various BAZs and incidence angles are used, |δt| may vary at a single OBS located on the anisotropic sediment with a tilted symmetry axis. The estimates of the H1 direction, fast direction, and |δt| for model D, which accounted for the effect of anisotropies dVP and dVS, show small deviations from their theoretical values (black circles in Fig. 8c,e,g). Thus, the estimates for models A–D indicate that the deviation of the corrected particle motion of the Ps from the radial direction is small.

We also examined a model containing part of a spherical volume of low-seismic velocities in the mantle (Fig. 7d) and an anisotropic sediment (model D in Table 1). We set the maximum velocity reduction of dV = −10% in both the P and S velocities at the point of (x, y, z) = (5.0, 10.0, 15.0); these perturbations are equivalent to A = −10% and D = −10%, in which A and D are dimensionless parameters representing isotropic P and S velocity perturbations, respectively (Park and Yu, 1992). The magnitude of the velocity anomalies is assigned to decrease in a Gaussian distribution from this point to all directions, but the anomaly zone is limited to be below 11 km depth (Fig. 7d). Consequently, both the H1 and fast directions deviate by ±10° from the theoretical values, whereas the estimation of the delay time is stable (gray circles in Fig. 8c,e,g). In particular, if the ray path of the direct P wave is relatively long and goes through various velocity anomalies to the conversion point, a large deviation in the particle motion from the radial direction may potentially be observed. Furthermore, we examined model F to investigate the effect of a dipping sediment–basement interface on the three measurements. In this model, although |δt| is consistent with the theoretical value, the H1 direction and fast direction deviate from the theoretical values by ±12° and ±10°, respectively, and are particularly biased when the BAZ is close to the strike of the dipping interface (white circles in Fig. 8c,e,g).

Table 2: Physical Parameters of the Assumed Materials for 3D Synthetic Calculation

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness H (km)</th>
<th>Vp (km s(^{-1}))</th>
<th>Vs (km s(^{-1}))</th>
<th>Density ρ (g cm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>2.00</td>
<td>1.50</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Sediment</td>
<td>2.00</td>
<td>2.00</td>
<td>1.00</td>
<td>1.91</td>
</tr>
<tr>
<td>Crust</td>
<td>7.00</td>
<td>6.27(^*)</td>
<td>3.49</td>
<td>2.78</td>
</tr>
<tr>
<td>Mantle</td>
<td>14.00</td>
<td>8.04(^†)</td>
<td>4.47</td>
<td>3.31</td>
</tr>
</tbody>
</table>

\(^*\)White (1984).
\(^†\)Dziewonski and Anderson (1981).

Determination of OBS Orientations

The final values of the sensor orientation and fast axis at an OBS site can be estimated by averaging those from individual earthquakes. In this study, we used weighted average, with the weight determined from the number of values in each azimuthal bin. Although we use polarity information of P and Ps waves to determine the H1 direction in step (3), the rose diagram of the estimated sensor orientation shows a small number of directions with the ambiguity of π (Fig. 9).

We therefore search the center direction of the azimuthal bin α at a point that maximizes the number of resulting values and then calculate the weighted average and its error within the range of −π/2 < α < π/2. Although we do not consider estimation errors in splitting parameters from the cross-correlation method, such errors can be considered in the weighted average.

From the synthetic tests discussed above, we found that the estimated sensor orientation and fast directions using the
proposed technique may vary with the effects of seismic-velocity anomalies along ray paths and a dipping sediment-basement interface. Although the 1D velocity model used for determining event locations (Obana et al., 2015) potentially causes errors in the direction estimations, the errors seem to be small, as will be discussed in the Confirmation of the Sensor Orientation from T Waves section. Therefore, in this study, if errors in either one of these directions are larger than ±10°, we exclude the OBS site from interpreting mechanisms for anisotropic structure. Moreover, to confirm the reliability of the sensor orientations estimates in this study, we compare them with those estimated from T waves (Shan et al., 2012). If the difference between the two estimates at an OBS site is larger than 15°, we used what was derived from the T-wave analysis to determine the fast direction at that site.

Results

The criteria $C_1 > 0.9$ for the splitting measurements ensures a good signal-to-noise ratio (SNR) of the Ps waves,
defined as the root mean square (rms) amplitude within 0.5 s after the P_s arrival (signal part), divided by that before the P arrival (noise part). The minimum and median SNRs among all the examined P_s waves are 1.8 and 4.3, respectively. Table 3 and Figure 10 present the results for the H1 and fast polarization directions at each OBS site as estimated with the proposed method. We have obtained stable results at 11 OBS sites with errors smaller than $\pm 10^\circ$, and scattered results at four OBS sites ($S002$, $S003$, $S023$, and $S029$; Fig. 10). At some sites, mostly east of the deformation front in the southern part of the array, no clear P waves were observed (squares in Fig. 10). At one site (ellipse in Fig. 10a), only the H1 direction can be determined; the marine sediment beneath this OBS is close to isotropic.

When the H1 directions from our method are compared with those from the T-wave analysis (Shan et al., 2012), the results at 4 of the 11 OBS sites do not meet the criteria mentioned in the Determination of OBS Orientations section. For these sites, we use the H1 directions from the T-wave analysis to determine the fast direction (four arrows in Fig. 10a), and the reliability of the H1 directions at the four sites will be discussed in the Confirmation of the Sensor Orientation from T Waves section. Although the H1 directions from the two approaches at the three OBS sites (S009, S014, and S025) differ by less than 45°, they are almost orthogonal at S006. Because the BAZs of the examined events at S006 are limited to only 270°–280°, the estimated H1 direction may be significantly affected by seismic-velocity anomalies along the ray paths of direct P waves. Table 3 summarizes the final results, and Figure 11a shows the fast directions. In particular, the sensor orientations at seven OBS sites can be determined without ambiguity (Table 3).

South of the NFZ and west of the deformation front, the fast directions are oriented either northeast–southwest (NE–SW; A in Fig. 11a) or northwest–southeast (NW–SE; D in Fig. 11a). Along the NFZ, the fast directions can be divided into two groups, shown as B1 (NW–SE) and B2 (north–northeast–southwest [NNE–SSW]) in Figure 11a.

Confirmation of the Sensor Orientation from T Waves

Shan et al. (2012) determined the sensor orientation using T waves excited by earthquakes, assuming that the T-wave particle motion is dominantly in the radial direction from the epicenter to receiver. However, the excitation mechanisms of T waves are due mainly to multiple reflections between the downsloping seafloor and the sea surface near the coast, and also rough seafloor scattering above the hypocenter (e.g., Williams et al., 2006). This implies that if the excitation location has a complex bathymetry, the propagation direction of the T wave and its particle motion may deviate from the radial direction. Furthermore, if the bathymetry around an OBS is complex, the T-wave particle motion may not be oriented in the radial direction. Therefore, we need to check the reliability of the sensor orientation estimated from the T-wave analysis.

We first rotate the two horizontal components into north–south and east–west directions using the sensor orientation from Shan et al. (2012), and then compare the T-wave particle motion at frequencies of 10–20 Hz with the radial direction. We selected waveforms of T waves with an SNR greater than 2. The ratio is defined as the rms amplitude within 50 s after the T arrival (signal part) divided by that before the P arrival (noise part). The first eigenvector of the T-wave particle motion is used to determine the dominant particle motion. If the sensor orientation is correct, the T-wave particle motion from any earthquake should be oriented in the radial directions. Our comparison indicates that the angular difference between particle motion and the radial direction averaged over all earthquakes is $2.86^\circ \pm 2.04^\circ$ for S006 (15 earthquakes), $4.82^\circ \pm 2.78^\circ$ for S009 (18 earthquakes), $2.16^\circ \pm 1.87^\circ$ for S014 (19 earthquakes), and $2.24^\circ \pm 1.55^\circ$ for S025 (12 earthquakes). Although the angular difference at S009 is less satisfactory than those of the other sites, it seems that the sensor orientations at the four OBS sites estimated by Shan et al. (2012) are reliable. The good comparison result also implies that the epicenter locations
Fracture Alignments in Marine Sediments Off Vancouver Island from Ps Splitting Analysis

Table 3

List of the Ocean-Bottom Seismometer Sensor Orientation (H1) and Fast Polarization Direction

<table>
<thead>
<tr>
<th>Station</th>
<th>H1 (°)</th>
<th>Error (°)</th>
<th>Fast Axis (°)</th>
<th>Error (°)</th>
<th>N (Events)</th>
<th>Final Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>S002</td>
<td>146.7</td>
<td>18.4</td>
<td>60.5</td>
<td>11.7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>S003</td>
<td>253.3</td>
<td>13.8</td>
<td>49.2</td>
<td>7.4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S005</td>
<td>224.3</td>
<td>8.8</td>
<td>47.7</td>
<td>9.4</td>
<td>6</td>
<td>224</td>
</tr>
<tr>
<td>S006</td>
<td>36.8</td>
<td>1.6</td>
<td>52.0</td>
<td>1.9</td>
<td>14</td>
<td>103 ± 180</td>
</tr>
<tr>
<td>S007</td>
<td>12.6</td>
<td>1.5</td>
<td>145.7</td>
<td>6.6</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>S008</td>
<td>198.2</td>
<td>3.3</td>
<td>75.4</td>
<td>1.7</td>
<td>56</td>
<td>198</td>
</tr>
<tr>
<td>S009</td>
<td>358.6</td>
<td>5.0</td>
<td>116.0</td>
<td>6.0</td>
<td>10</td>
<td>154 ± 180</td>
</tr>
<tr>
<td>S010</td>
<td>244.7</td>
<td>3.4</td>
<td>156.6</td>
<td>4.2</td>
<td>29</td>
<td>245</td>
</tr>
<tr>
<td>S012</td>
<td>316.0</td>
<td>1.5</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>S014</td>
<td>262.6</td>
<td>7.7</td>
<td>7.2</td>
<td>3.6</td>
<td>13</td>
<td>40 ± 180</td>
</tr>
<tr>
<td>S015</td>
<td>93.1</td>
<td>1.4</td>
<td>7.6</td>
<td>3.3</td>
<td>12</td>
<td>93</td>
</tr>
<tr>
<td>S023</td>
<td>145.1</td>
<td>12.1</td>
<td>54.7</td>
<td>12.1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>S024</td>
<td>280.6</td>
<td>2.2</td>
<td>32.8</td>
<td>4.8</td>
<td>32</td>
<td>281</td>
</tr>
<tr>
<td>S025</td>
<td>232.3</td>
<td>1.4</td>
<td>65.7</td>
<td>3.7</td>
<td>46</td>
<td>26 ± 180</td>
</tr>
<tr>
<td>S028</td>
<td>58.3</td>
<td>7.0</td>
<td>26.7</td>
<td>7.9</td>
<td>7</td>
<td>58</td>
</tr>
<tr>
<td>S029</td>
<td>233.7</td>
<td>7.9</td>
<td>119.9</td>
<td>14.0</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity

Before we discuss the fast polarization directions obtained in this study, we first estimate the size of the anisotropic rock volume represented by the split Ps wave observed at an OBS site. The amplitude of the Ps wave observed at a station is constructed by amplitudes that are spread around the ray path. We estimate the horizontal radius of the Ps amplitude from the conversion point at the sediment–basement interface using half of a typical wave duration, which we call the sensitivity region R in this study (Fig. 2a). Using the velocity model presented in Table 2 and the method used by Cao and Levander (2010), we numerically estimate R at the sediment base for two earthquakes with a focal depth $H = 30$ km and epicentral distance $Δ = 40$ km. We first calculate the conversion point at the sediment–basement interface and the travel times of the Ps waves that are converted at points scattered nearby. Next, by horizontally moving the scattered point with respect to the conversion point, we search the horizontal distance within which the differential travel time between the Ps-converted wave and the Ps-scattered wave is less than 0.25 s. The time length of 0.25 s is half of the typical wave duration of the Ps phases (Fig. 5). As a result, we obtain $R = 1.003$ km and $R = 1.057$ km at the sediment base on the near and far sides of the earthquake, respectively. Similar results of $R = 0.989–1.081$ km and $R = 1.008–1.061$ km are obtained also for $(Δ, H) = (100, 30)$ and $(Δ, H) = (40, 20)$, respectively. These results indicate that R does not depend strongly on event location and probably changes with V_S and the thickness of the sediment. Because the amplitude decreases from the center to the edge within the sensitivity region, the Ps amplitude near the conversion point has a large constructive contribution. Considering the above estimations and the case of thicker sediment (e.g., 2 km), the Ps waves observed in this study could be affected by the anisotropic structure in the sediment within a horizontal radius of 1 km from an OBS site. Within the volumetric sensitivity region, the Ps wave would split because of the anisotropic structure, which is represented by an effective elastic medium containing aligned inclusions such as cracks (e.g., Crampin, 1981).

S Anisotropy

We interpret the observed fast polarization directions west of the deformation front and near the NFZ in the West of the Deformation Front and South of the NFZ and The Nootka Fault Zone sections, respectively. In the Prediction for the Cascadia Basin and Accretionary Prism section, we further speculate on the anisotropic structure within marine sediments of the Cascadia basin and accretionary prism from the results of previous studies.

West of the Deformation Front and South of the NFZ

S anisotropy within marine sediments is created mainly by crack opening and normal faulting associated with the stress field applied to the sediment. In this case, the fast polarization direction is parallel to the compressional direction within the sediment (e.g., Tonegawa, Fukao, Fujie, et al., 2015). When normal faults formed at spreading centers are reactivated such as in the Cascadia basin (Nedimović et al., 2009), S anisotropy is also developed in the basement through normal faulting. The basement faulting produces a fast polarization direction parallel to the magnetic lineation.

West of the deformation front, we propose that crack opening is the dominant mechanism for creating S anisotropy within the marine sediments (Figs. 11b and 12a). There are not enough earthquakes to constrain the stress field in this

determined by Obana et al. (2015) using a 1D velocity model are adequately accurate for our purpose.
region (Fig. 11b). Crack opening may be induced by horizontal compression of sediments across the margin as a result of the Juan de Fuca plate subducting beneath the North American plate in the directions of N56°E–N68°E (DeMets et al., 1990; Riddihough and Hyndman, 1991; region A in Fig. 11b). The fast polarization directions at the two OBSs (S005 and S008; A in Fig. 11a) in this study show good agreement with regard to the convergence direction.

Slightly closer to the deformation front, two other OBS sites S006 and S007 show a NW–SE fast direction (D in Fig. 11a). This fast direction corresponds to the strike direction of the frontal thrusts that have developed due to horizontal compaction (e.g., Westbrook et al., 1994; Yuan et al., 1994).

The Nootka Fault Zone

The OBSs around the NFZ may be divided into two groups (Fig. 11a): (1) a cluster of three showing NW–SE (or north-northwest–south-southeast) fast direction (B1 in Fig. 11a), and (2) another three showing NNE–SSW fast direction (B2 in Fig. 11a). This means that the fast axes within the sediments vary at a scale of ~50 km. As shown in Figure 11b, earthquake focal mechanisms around the NFZ show primarily left-lateral strike-slip faulting. Our estimated fast directions cannot be simply associated with the focal mechanisms. To interpret these fast directions (region B in Fig. 11b), it is necessary to consider the fact that the S anisotropic structure in the sediment is potentially affected by fractures and cracks associated with fault motion below (Fig. 12b). On land, characteristic fractures have often been found in the overburden overlying seismically active strike-slip faults. Such fractures are formed before the development of a through-going fault, or Y shear (Bartlett et al., 1981), with different direction groups known as Riedel (R) shears, antithetic R shears (e.g., Tchalenko, 1970), P shears (Tchalenko and Ambraseys, 1970), and tension fractures (e.g., Wilcox et al., 1973). Similar types of fractures have presumably formed in the marine sediments covering the NFZ. Figure 12b displays theoretically expected fracture directions (e.g., Wilcox et al., 1973; Christie-Blick and Biddle, 1985) with respect to the NFZ. We use the strike direction of the NFZ of N55°E determined from relocated epicenters (Braunmiller and Nábělek, 2002). Although our observations are not completely consistent with the theoretical directions of these shears, group 1 roughly corresponds to antithetic R shears, and group 2 is close to the orientation of tension fractures.

Because of the lack of large bathymetric relief across the NFZ except for near the Juan de Fuca ridge (Hyndman et al., 1979), we assume that purely left-lateral motion is dominant in the part of the fault zone hosting the six OBSs (B1 and B2 in Fig. 11a). If there is significant transtension or transpres-
Fracture Alignments in Marine Sediments Off Vancouver Island from Ps Splitting Analysis

Figure 11. (a) Fast polarization direction at each OBS site as determined using both the proposed method and the T-wave analysis of Shan et al. (2012). The labels (A, D, B1, and B2) correspond to the four groups of the fast polarization directions. (b) Fracture variations and their directions associated with different mechanisms. The interpretations for the regions A and B are based on our observations, whereas those for the regions C and D are based on results from previous studies. The fast axes at the OBSs within the region A correspond to shear fractures due to Nootka fault motion. Focal mechanism solutions with magnitudes of 5.0 and greater during 2000–2014 are displayed (Ekström et al., 2012). The color version of this figure is available only in the electronic edition.

Prediction for the Cascadia Basin and Accretionary Prism

Based on results from the previously published studies, we further interpret anisotropic structure in other regions off Vancouver Island outside of the SeaJade study area. In the Cascadia basin, Nedimović et al. (2009) reported the existence of steeply dipping normal faults within the sediments due to the reactivation of basement normal faults. Magnetic lineation in the Juan de Fuca plate is oriented mainly NNE–SSW, and the fast polarization direction for the sediment layer appears to be aligned in that direction (region C in Figs. 11b and 12a). In the accretionary prism landward of the deformation front (region D in Fig. 11b), margin-normal cracks have formed due to horizontal compression of sediments, and thrust faults striking at margin-parallel have also been created (e.g., Davis and Hyndman, 1989; Calvert and Clowes, 1990; Hyndman et al., 1990; Westbrook, 1994; Yuan et al., 1994; Fig. 12b). Indeed, a stress field analysis based on the borehole breakouts in the accretionary prism shows nearly margin-normal horizontal compression (N25°–35°E; Riedel et al., 2016). The latter, margin-parallel fast axes, could be inferred in this study in a limited area (Fig. 11a). Therefore, the anisotropic structure in the accretionary prism presumably represents lateral spatial variations of the two effects, as found in the Nankai subduction zone of Japan (e.g., Lin et al., 2010; Tsuji et al., 2011).

Conclusion

Using Ps waves converted at the sediment–basement interface, we determined the sensor orientation of OBSs deployed off Vancouver Island. In the meantime, we also determined the fast polarization direction in the sediments from the Ps-wave splitting parameters. The validity of this method is confirmed by the use of synthetic waveforms calculated with a 3D finite-difference method. Our numerical simulations also reveal that the estimated sensor orientation from the corrected Ps particle motions could be affected by the effects of the dipping symmetry axis of anisotropic structures and seismic-velocity anomalies along the ray paths of direct
P waves. Accordingly, we corrected the sensor orientations using results of T-wave analyses. Thus, this study demonstrates that the technique introduced in this article, when combined with T-wave analyses, is an effective tool for estimating the fast directions and sensor orientation when the OBS is located on a seafloor, below which seismic activity in the uppermost mantle is high and the sediment–basement interface is sharp.

The anisotropy of marine sediments determined in this study near the northern Cascadia subduction zone can be interpreted by considering the following two processes: (1) NFZ shearing is thought to be responsible for fractures in the overburden; and (2) horizontal compression near the Cascadia margin due to the subduction of the Juan de Fuca plate is considered to be responsible for margin-perpendicular cracks. From the results of previous studies, two additional factors are expected to contribute to the anisotropy: (1) normal faults associated with the reactivation of fractures within the igneous oceanic crust and (2) Cascadia accretionary prism shortening.

Data and Resources

Seismograms used in this study were collected with ocean-bottom seismometers (OBSs) of Japan Agency for Marine-Earth Science and Technology (JAMSTEC). Figures were created using the Generic Mapping Tools v.4.5.7 (http://gmt.soest.hawaii.edu/, last accessed March 2016).

Acknowledgments

We thank R. Hyndman for his constructive comments that improved the article. We also acknowledge helpful and detailed reviews from Jeffrey Park and an anonymous reviewer. This study was partially supported by the Japan Society for the Promotion of Science (JSPS) (23253005). T. T. was funded by a Research Fellowship of the JSPS for Grants-in-Aid for Young Scientists (B) (15K17753). This article is also the Geological Survey of Canada Contribution Number 20160105.

References

Research and Development Center for Earthquake and Tsunami
Japan Agency for Marine-Earth Science and Technology
3173-25, Showa-machi, Kanazawa-ku
Yokohama 236-0001, Japan
tonegawa@jamstec.go.jp
(T.T. K.O., Y.Y., S.K.)

Pacific Geoscience Centre
Geological Survey of Canada
Sidney, British Columbia
Canada V8L 4B2
(K.W., H.K.)

GEOMAR Helmholtz Centre for Ocean Research Kiel
Wischhofstraße 1-3
D-24148 Kiel, Germany
(M.R.)

School of Earth and Ocean Sciences
University of Victoria
Victoria, British Columbia
Canada V8W 3V6
(G.S.)

Manuscript received 16 March 2016;
Published Online 15 November 2016