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ABSTRACT

The bifurcation behavior of a conceptual heat–salt oscillator model is analyzed by means of numerical con-
tinuation methods. A global (homoclinic) bifurcation acts as an organizing center for the dynamics of the
simplified convective model. It originates from a codimension-2 bifurcation in an extended parameter space.
Comparison with earlier work by Cessi shows that the intriguing stochastic thermohaline excitability can be
understood from the bifurcation structure of the model. It is argued that global bifurcations may play a crucial
role in determining long-term variability of the thermohaline circulation.

1. Introduction

Analysis of recent paleorecords (Dansgaard et al.
1984; Heinrich et al. 1988; Johnsen et al. 1992; Bond
et al. 1993; Bond and Lotti 1995; Severinghaus and
Brook 1999) from the ‘‘Last Glacial Period’’ has re-
vealed the existence of abrupt millennial-scale climate
swings, known as Dansgaard–Oeschger cycles. Several
climate modelers have attempted to simulate and un-
derstand these notable climate transitions (Sakai and
Peltier 1997; Ganopolski and Rahmstorf 2001, 2002;
Timmermann et al. 2003). A common result is that mil-
lennial-scale variability originates from a convection–
advection–diffusion oscillation, which bears many sim-
ilarities with the deep-decoupling mode described by
Winton (1993). Such oscillations can be excited by mod-
erate steady or transient freshwater forcing (Sakai and
Peltier 1997; Ganopolski and Rahmstorf 2001; Tim-
mermann et al. 2003) and/or by stochastic freshwater
fluctuations (Ganopolski and Rahmstorf 2002; Tim-
mermann et al. 2003). However, the origin of the mil-
lennial-scale period has not been understood sufficient-
ly. In Timmermann et al. (2003) it is argued that a
homoclinic bifurcation and a specific type of noise ex-
citation (coherence resonance) might have an important
influence on the periodicity of the simulated millennial-
scale climate swings. This issue will be studied here
using a conceptual two-box model (Welander 1982; Ces-
si 1996), capturing convective adjustment and a simple
relaxation toward a reference density profile. Concep-
tual box models of thermohaline flow have been used
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widely (e.g., Stommel et al. 1961; Winton 1993; Cessi
1994; Marotzke and Stone 1995; Paillard 1995; Cessi
1996, Lohmann et al. 1996; Kuhlbrodt et al. 2001;
Rahmstorf 2002; Titz et al. 2001, 2002; Timmermann
and Lohmann 2001; Gildor and Tziperman 2001; Schulz
et al. 2002) in order to study first-order processes and
feedbacks that govern the stability and variability of
thermohaline flows. These simplified models, which
treat the thermohaline circulation (THC) in terms of a
few advectively/diffusively and/or convectively con-
nected homogenous reservoirs, facilitate a systematic
study of nonlinearities, multiple equilibria, and bifur-
cations. In an attempt to connect results from simplified
box models and more complex zonally averaged models
for the THC, Dijkstra (2000) showed that the existence
of lateral advective multiple flow equilibria can be
found in all levels of model complexity. Hence, simple
box models are useful in order to understand dynamical
features simulated by more complex models. The role
of vertical processes on the other hand, such as con-
vection, vertical diffusion, and diapycnal mixing, in
generating nonlinear THC dynamics is less clear. An
example of highly nontrivial dynamics resulting from a
simple convective two-box model has been described
by Welander (1982). Welander argues that freshwater
fluxes, which force vertical convective processes, may
result in self-sustained oscillations in a simple heat–salt
oscillator model. An analysis of the stochastically ex-
cited convective two-box model (Welander 1982) by
Cessi (1996) revealed furthermore that noise plays an
important role in determining the return time of con-
vective flushes. This behavior is consistent with the con-
cept of coherence resonance, proposed by Pikovsky and
Kurths (1997) and Lindner and Schimansky-Geier
(1999). Coherence resonance has also been identified in
more complex climate models (Ganopolski and Rahms-
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torf 2002; Timmermann et al. 2003) and might play a
role in the generation of Dansgaard–Oeschger events.

The goal of this paper is to explain the major findings
of Cessi (1996) using dynamical systems analysis.

• Freshwater fluxes determine whether the system os-
cillates or settles into a steady state. The period of the
oscillations is very sensitive to the freshwater flux and
may become arbitrarily long near the transition from
steady to periodic behavior.

• The oscillations are of finite amplitude, even just past
the threshold value that separates periodic behavior
from a steady equilibrium.

• One extremum of the oscillation is close to the value
of the steady state that exists in the absence of oscil-
lating behavior.

• When the deterministic system reaches a steady state,
oscillations can be excited easily by adding a sto-
chastic component to the freshwater flux. The period
of the resulting oscillations decreases with increasing
noise amplitude, while the amplitude of the oscillation
is insensitive to the amplitude of the noise.

We perform a numerical bifurcation analysis (Doedel
and Kernévez 1986) of the nonlinear heat–salt oscillator
(Welander 1982; Cessi 1996). We show that the four
aforementioned properties of the heat–salt oscillations
can be explained based on the underlying bifurcation
structure of the model, namely, the existence of a hom-
oclinic bifurcation. Moreover, we find that the homo-
clinic bifurcation originates from a multiple (codimen-
sion 2) bifurcation point that is, an ‘‘organizing center.’’

2. Welander’s heat–salt oscillator

The model under consideration was orignally studied
by Welander (1982), and a detailed description can be
found in Cessi (1996). The model consists of two boxes
on top of each other, each having a well-mixed tem-
perature and salinity. The bottom box is assumed to be
much deeper than the top box, and so its salinity S0 and
temperature T0 are assumed to be constant. Temperature
T and the salinity S of the top box change according to

Ṫ 5 2g(T 2 T ) 2 k(T 2 T ) and (1)A 0

F
Ṡ 5 S 2 k(S 2 S ). (2)0 0H

Buoyance flux is parameterized in terms of mixed
boundary conditions: a relaxation condition to a pre-
scribed atmospheric equilibrium temperature TA with a
time constant g 21 and a prescribed salinity flux (F/H)S0;
H denotes the depth of the upper box. The density r(T,
S) is diagnosed from a linear equation of state:

r(T, S) 5 r [1 1 a (S 2 S ) 2 a (T 2 T )]. (3)0 S 0 T 0

Throughout this paper we will use the nondimension-
alized version of Eqs. (1) and (2) introduced by Cessi

(1996) (see also this reference for the corresponding
parameter values):

ẋ 5 1 2 x 2 nx and ẏ 5 m 2 ny, (4)

with the definitions

T 2 T a (S 2 S )0 S 0x [ and y [ (5)
T 2 T a (T 2 T )A 0 T A 0

and the normalized ‘‘diffusion’’ coefficient n 5 k/g.
The ratio of surface salinity and temperature flux is
given by

Fa Ss 0m 5 . (6)
gHa (T 2 T )T A 0

For a fixed atmospheric temperature TA changes in m
represent changes in the normalized freshwater flux. For
constant diffusivity n the system relaxes quickly to a
stationary solution. Interesting solutions occur when we
assume a stratification dependence of the diffusion co-
efficient n 5 n[r(T, S)] (Welander 1982). For a stable
stratification we assume a small value of n1 5 0.1, rep-
resenting a ‘‘nonconvective state,’’whereas n attains a
value of n2 5 5.0 when the stratification becomes un-
stable.

The model we use throughout this work differs from
the original Welander model in that it uses a generalized
dependence of n on the vertical density gradient. Instead
of a Heavyside function used by Welander (1982) and
Cessi (1986), a smooth approximation is used:

1 1 tanh[s(y 2 x 2 «)]
n 5 n 1 (n 2 n ) . (7)1 2 1 2

The parameter « has already been introduced by We-
lander (1982). The additional parameter s represents
the smoothness between the nonconvective and the
‘‘convective’’ state transitions. In a sense, our model
can be seen as a generalization of the original Welander
model with an additional parameter s giving rise to a
more complex stratification dependence of the diffusiv-
ity n(s, «). Note that the original discontinous model
is contained in our analysis as a limiting case, s → `.

The freshwater forcing m, as in many other studies,
is chosen as a natural bifurcation parameter of the sys-
tem.

3. Results

A typical bifurcation diagram of Welander’s heat–salt
oscillator model is shown is Fig. 1. It captures the de-
pendence of the normalized temperature variable x on
the normalized freshwater flux m. The diagram is ob-
tained by numerical continuation (Doedel and Kernévez
1986) of the steady and time-periodic solutions follow-
ing the m variable. The parameters s and « are fixed to
s 5 8 and « 5 0.21.

For a normalized freshwater flux m below the Hopf
bifurcation point the solid line represents the only so-
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FIG. 1. Typical bifucation diagram of the Welander oscillator with
freshwater forcing m. Mixing parameters « and s are held fixed. Self-
sustained oscillation and multiple equilibria occur at ‘‘Hopf’’ and
‘‘fold’’ bifurcation points, respectively. Extrema of oscillation am-
plitude in x are plotted with m. Periodic orbit merges with saddle
point at homoclinic connection. Note that this is not directly visible
because of projection on x variable.

FIG. 2. Period T of self-sustained oscillation corresponding to bi-
furcation diagram shown in Fig. 1. Divergence of period occurs close
to homoclinic connection.

FIG. 3. Typical stability diagram of the Welander oscillator with
freshwater forcing m and mixing parameter «; s is held fixed. Fold
bifurcations merge with an inverse Hopf bifurcation in multiple bi-
furcation points known as ‘‘organizing centers,’’ resulting in global
bifurcations.

lution of the conceptual heat–salt oscillator. It is a stable
fixed point, which becomes unstable via a supercritical
Hopf bifurcation. The m dependence of the emerging
limit cycle is indicated in Fig. 1 by depicting also the
oscillation maxima and minima. The location of the
unstable fixed point arising at the Hopf bifurcation point
is represented by the dashed line in Fig. 1. At a fold
bifurcation point this unstable fixed point merges with
a saddle point. For lower m values of about 0.18 this
saddle point merges with a third equilibrium solution
in a second fold bifurcation. This third fixed point is
stable for m . 0.2, as indicated by the solid line, and
represents a nonconvective situation forced by strong
freshwater forcing. Within the parameter region in be-
tween the two fold bifurcations the Welander model
exhibits three equilibria, giving rise to hysteresis be-
havior. However, only one of these equilibria is stable.
If m varies between, say, 0.14 and 0.25, another type
of hysteresis can arise that connects a stationary stable
state with a stable oscillatory solution. For m ø 0.18
we observe that the stable limit cycle merges with the
saddle point giving rise to a homoclinic bifurcation.1

The disappearence of a limit cycle with finite amplitude,
as indicated in Fig. 1, is typical for homoclinic bifur-
cations and represents a simple interpretation of the re-
sults discussed in Cessi (1996). Figure 2 shows the typ-
ical divergent behavior of the oscillation period near a
homoclinic bifurcation. At the Hopf bifurcation point
the period T is entirely determined by the imaginary
part of the critical eigenvalues. It is shown in Fig. 2
that this period is almost unchanged for a wide range
of forcing amplitudes m. Close to the homoclinic bi-
furcation the period T diverges quickly. This is due to
the fact that close to a homoclinic bifurcation the os-
cillation period is no longer determined by the eigen-

1 Note that because of the projection on the x variable the homo-
clinic bifurcation point is not directly visible in Fig. 1.

values but rather by the distance in phase space between
limit cycle and saddle point. This behavior of the system
operating in the parameter vicinity of a homoclinic orbit
may be important in order to generate long-term climate
variability, which is not understandable simply in terms
of linear dynamics and linear eigenmodes, a point that
has also been stressed by Timmermann et al. (2003).

A homoclinic orbit originates from a connection be-
tween a saddle point and a limit cycle. The saddle point
originates from a fold bifurcation, whereas the limit
cycle is born from a Hopf bifurcation. In many cases
the underlying codimension-1 bifurcations themselves
result from codimension-2 bifurcations (Guckenheimer
and Holmes 1983). The question we address here is
whether the existing fold and Hopf bifurcations can be
traced back to an organizing codimension-2 bifurcation.
In order to study this we have computed a two-parameter
stability diagram of the location of fold and Hopf bi-
furcation points (Fig. 3). Here, m and « are both taken
as control parameters while s is held fixed.

The two fold lines depicted in Fig. 3 correspond to
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fold bifurcations as shown, for example, in Fig. 1 for
fixed «. They form a region of coexistence where mul-
tiple equilibria exist. Reducing « it is found that the two
fold lines merge into a cusp bifurcation point. A further
decrease of « from the cusp gives rise to an inverse
Hopf bifurcation. The oscillation frequency of the limit
cycle, which results from the Hopf bifurcation, is zero
at the cusp point but increases with decreasing «. The
Hopf bifurcation is supercritical, so the amplitude is zero
at onset but increases continously while reducing m. At
the point where the both fold lines meet the Hopf line
two real critical eigenvalues occur giving rise to a mul-
tiple bifurcation point. Such a point (in this case a Bog-
danov–Takens point) is called an ‘‘organzing center.’’
The importance of such an organizing center results
from the fact that the entire bifurcation structure close
to this point, and thus the observed dynamics, is com-
pletely determined by the properties of this point. Fur-
thermore, it is known that a homoclinic bifurcation, as
found in the bifurcation diagram shown in Fig. 1, emerg-
es from such codimension-2 points (Guckenheimer and
Holmes 1983). The location of the homoclinic bifur-
cation shown in Fig. 1 is not calculated explicitly in the
two-dimensional parameter plane, but for mathematical
reasons it is known that the homoclinic bifurcation orig-
inates also from the codimension-2 point. Moreover, the
frequency of the homoclinic orbit is always zero, but
the amplitude reduces from a finite value at larger « to
zero while approaching the codimension-2 point by de-
creasing «. Thus it can be concluded that the qualitative
bifurcation structure, and thus the dynamics of the gen-
eralized Welander oscillator, can be understood entirely
from the behavior close to a single multiple bifurcation
point, that is, an ‘‘organizing center.’’ Note that a second
multiple bifurcation point occurs but only for large «;
therefore it is not considered here.

In order to analyze the stability behavior with respect
to s several stability diagrams similar to that shown in
Fig. 3 have been computed. It is found that qualitatively
the stability behavior remains the same for s $ 8. How-
ever, this value is associated with a rather smooth switch
from convective to nonconvective behavior. In order to
make a connection with the limiting case of the original
discontinous Welander oscillator the stability behavior
is analyzed for s values of up to s # 500. The numerical
analysis suggests that the location of the organizing cen-
ter tends to « → 0 as s → `. Thus it seems reasonable
to regard the bifurcation diagram shown in Fig. 1 as a
smooth version of the original discontinous bifurcation
diagram of the simple convective heat–salt oscillator
studied here.

4. Conclusions

Numerical continuation methods were applied to in-
vestigate the bifurcation behavior of a simple convective
heat–salt oscillator. We found a homoclinic bifurcation
and hysteresis behavior that both can be traced back to

a multiple bifurcation point in an extended parameter
space. We have shown that this point acts as an orga-
nizing center for the bifurcation structure and the re-
sulting dynamics. It gives birth to a Hopf bifurcation
and a cusp bifurcation. A comparison between the bi-
furcation behavior described here and the results dis-
cussed by Cessi (1996) yields a natural explanation of
points 1–3 and a possible explanation of point 4 dis-
cussed in the introduction.

The homoclinic bifurcation we identified here is as-
sociated with

• arbitrarily long periods close to the breakup of the
oscillating regime,

• an abrupt change from a stationary state to a finite-
amplitude oscillation that emerges when the fresh-
water forcing is reduced from high to low values, and

• one extreme phase of the oscillation that resembles
the stationary point.

The behavior of the stochastically excited Welander
oscillator, as described in Cessi (1996), can be closely
related to the bifurcation structure found in this work.
The coexistence of a stable fixed point and a stable limits
cycle for certain freshwater forcings, which are de-
stroyed by a fold and a homoclinic bifurcation, respec-
tively, result in a stochastically excitable dynamics due
to a nonzero jump probability between the attractors in
case of parameter noise. Such ‘‘excitable systems’’ have
been studied extensively by Stone and Armbruster
(1999) and Stone and Holmes (1989) and share typical
features of ‘‘thermohaline excitability’’ discussed by
Cessi (1996). However, details of the stochastic dynam-
ics are beyond the scope of this bifurcation analysis and
will be subject of further work.

Here we have discussed the possibility that, while
reducing freshwater forcing, abrupt changes from a sta-
tionary nonconvecting state to an oscillating state are
to be expected in the vicinity of a homoclinic bifurca-
tion.

While passing the homoclinic threshold (see Fig. 1)
the periodicity of the oscillation depends strongly on
the freshwater flux (Fig. 2). This specific behavior
agrees with the results from a recent study of Timmer-
mann et al. (2003) using a more sophisticated coupled
climate model. In that study it is argued that the ob-
served Dansgaard–Oeschger cycles during the last gla-
cial period can be interpreted on the basis of a bifur-
cation diagram that closely resembles the bifurcation
structure presented here.

Hence, we conjecture that observed abrupt changes
of the thermohaline circulation may originate from a
Hopf bifurcation due to convection. The possibility that
a long-term limit cycle can approach a saddle point
might also have climatic implications. For the detailed
bifurcation structure of the THC advective nonlineari-
ties play a crucial role in order to generate a saddle-
node bifurcation. Whether these nonlinarities will



2760 VOLUME 34J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

strongly modify the limit cycle period from its linearly
determined value has to be determined.

Furthermore, our work stresses the importance of
multiparameter continuation studies of both stable and
unstable solutions and of bifurcation points in order to
explore the origin of abrupt climate changes.
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