Synthetic communication signals influence wild harbour porpoise (Phocoena phocoena) behaviour.

Culik, Boris, von Dorrien, Christian, Müller, Vailett and Conrad, Matthias (2015) Synthetic communication signals influence wild harbour porpoise (Phocoena phocoena) behaviour. Bioacoustics, 24 (3). pp. 201-221. DOI 10.1080/09524622.2015.1023848.

[img] Text
09524622.2015.1023848.pdf - Published Version
Restricted to Registered users only

Download (919Kb) | Contact

Supplementary data:


We used our novel and programmable Porpoise Alarm (PAL, patd.) to synthesize life-like, electronic harbour porpoise communication signals based on those described for captive animals. In the Little Belt, Denmark, we employed PAL (source level 158 ± 1 dB p–p re 1 μPa@1 m; centroid frequency 133 ± 8.5 kHz) to synthesize three aggressive click train types termed “A”, “F3” and “M1” to naive, free-living harbour porpoises. Via theodolite tracking (372 h of total visual effort spread over 10 expeditions) we found that, depending on signal type, porpoises either avoid or become attracted to PAL: Signal types “A” and “F3” are slight deterrents, porpoises increasing minimum range (+23 to 32 m, respectively), whereas “M1” attracts porpoises, reducing range (by − 29 m). As determined via archival acoustic detectors (AADs), both signals “F3” and “M1” led the animals to significantly intensify their click rate (by +10% and 68%, respectively) while signal “A” led to a significant reduction ( − 59%). We propose that equipping fishing gear with PAL emitting signal “F3” could potentially reduce porpoise by-catch by increasing (1) awareness through enhanced echolocation and (2) distance to the nets. Detection probability and radius of PAL/AAD tandems could be improved by emitting signal “M1” to focus porpoise echolocation signals on the AAD. The signal may also be useful in luring animals away from hazards, which may be helpful for conservation measures prior to the onset of harmful acoustic activities such as pile-driving, seismic exploration or ammunition clearance.

Document Type: Article
Keywords: harbour porpoise, Phocoena phocoena, click communication, field experiments, by-catch mitigation, acoustic surveys, instrumentation
Research affiliation: OceanRep > GEOMAR > FB3 Marine Ecology > FB3-EV Marine Evolutionary Ecology
Refereed: Yes
Open Access Journal?: No
DOI etc.: 10.1080/09524622.2015.1023848
ISSN: 0952-4622
Date Deposited: 27 Nov 2015 10:57
Last Modified: 21 Jan 2019 13:32

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...