Supplement of

Projections of oceanic N_2O emissions in the 21st century using the IPSL Earth system model

J. Martinez-Rey et al.

Correspondence to: J. Martinez-Rey (jorge.martinezrey@univ-brest.fr, jorge.martinez-rey@lsce.ipsl.fr)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.
The O_2 modulating function $f(O_2)$ in P.OMZ is defined as,

$$f(O_2) = \begin{cases}
\frac{O_2}{O_2^1} & O_2 < O_2^1 \\
1 & O_2^1 < O_2 < O_2^2 \\
0.7 \cdot \exp \left(-0.5\frac{(O_2 - O_2^2)}{O_2^2} \right) + 0.3 \cdot \exp \left(-0.05\frac{(O_2 - O_2^2)}{O_2^2} \right) & O_2 \geq O_2^2
\end{cases}$$

where O_2^1 is 1 µmol L$^{-1}$ and O_2^2 is 5 µmol L$^{-1}$. The shape of the function is shown in Fig. S1.

Fig. S1: Oxygen modulating function $f(O_2)$ in the low-O_2 production pathway term included in P.OMZ from Goreau et al. (1980).

Fig. S2: Vertically integrated (a) high-O_2 and (b) low-O_2 production pathways (in gN m$^{-2}$ yr$^{-1}$) in P.OMZ for the averaged 1985 to 2005 historical simulation.