Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods

Mario Molina-Kescher1, Martin Frank1, Raúl Tapia1, Thomas A. Ronge2, Dirk Nürnberg1, and Ralf Tiedemann2

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 2Alfred Wegener Institute Helmholtz Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany

Abstract The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of −5.8 and 18.757 for 143Nd and 206Pb/207Pb, respectively, whereas glacial averages are −5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic δ^{13}C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.

1. Introduction

The global thermohaline circulation (THC) contributes to regulate Earth’s climate through the redistribution of heat from lower to higher latitudes and also through transport and storage of nutrients, oxygen, and CO$_2$ in the deep ocean [e.g., Broecker, 1982; Rahmstorf, 2002; Sigman et al., 2010; Adkins, 2013]. The main deep water formation areas are located in the North Atlantic and in the Southern Ocean. Essentially, North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) mix with the eastward flowing Antarctic Circumpolar Current (ACC) in the Southern Ocean to form Circumpolar Deep Water (CDW), in which also deep waters of Pacific origin are entrained. CDW can be subdivided into nutrient-depleted Upper CDW (UCDW) and more nutrient-enriched Lower CDW (LCDW) [cf. Carter et al., 2009], which fill the deep Indian and Pacific Oceans via Deep Western Boundary Currents (DWBCs). Given that UCDW and LCDW cannot be distinguished based on their Nd isotope compositions, we only refer to CDW for the purpose of our study. The return flow to the Southern Ocean at middepths occurs via nutrient-rich and oxygen-depleted waters [e.g., Kawabe and Fujio, 2010]. The South Pacific represents the entrance and exit of deep water masses feeding and leaving the Pacific Ocean, which is the largest marine nutrient and CO$_2$ reservoir on Earth.

The carbon isotope composition (δ^{13}C) of benthic foraminifera has been widely used to evaluate past changes in deep water circulation [Boyle and Keigwin, 1986; Duplessy et al., 1988; Charles and Fairbanks, 1992; Samthnein et al., 1994; Matsumoto and Lynch-Stieglitz, 1999; Matsumoto et al., 2002; Ninnemann and Charles, 2002; McCave et al., 2008]. Its dissolved distribution follows the major nutrients in the present-day ocean and is overall consistent with the age and mixing of water masses along the thermohaline circulation. Young, nutrient-depleted water masses, such as NADW, are characterized by positive δ^{13}C values near $+1\%_o$, whereas the oldest, least ventilated deep water masses in the North Pacific are significantly lighter and even reach negative δ^{13}C signatures [Lynch-Stieglitz, 2003; Ravelo and Hillaire-Marcel, 2007]. The dissolved bottom water δ^{13}C signal can also be affected by processes other than water mass mixing, such as isotopic disequilibrium between the atmosphere and the surface ocean [e.g., Charles et al., 1993], changes in primary production...
[Mackensen et al., 1993], and the balance between terrestrial and oceanic carbon storage on glacial-interglacial time scales [Oliver et al., 2010; Peterson et al., 2014].

Radiogenic Nd isotope compositions ($^{143}\text{Nd}/^{144}\text{Nd}$) recorded in authigenic Fe-Mn coatings of sediment particles have been shown to reliably trace past deep circulation patterns unaffected by biological and thermodynamic fractionation effects [e.g., Rutberg et al., 2000; Piotrowski et al., 2004, 2005]. Water masses acquire their Nd isotopic signal (expressed as $\varepsilon_{\text{Nd}}=[^{143}\text{Nd}/^{144}\text{Nd}_{\text{sample}}/^{143}\text{Nd}/^{144}\text{Nd}_{\text{CHUR}}−1]×10^4$, whereby CHUR stands for the Chondritic Uniform Reservoir ($^{143}\text{Nd}/^{144}\text{Nd}=0.512638$) [Jacobsen and Wasserburg, 1980]) in their formation areas as a consequence of weathering of continental rocks with distinct isotopic signatures. Consequently, deep water masses formed in the North Atlantic and spreading southward as NADW are characterized by a distinctly negative (unradiogenic) ε_{Nd} signature of approximately $−13.5$ [Piepgras and Wasserburg, 1987; Rickli et al., 2009; Lambelet et al., 2016], which originates from weathering of the old cratonic rocks of Canada and Greenland. In contrast, the ε_{Nd} signature of North Pacific Deep Water (NPDW) ranges from $−2$ to $−4$ [Piepgras and Jacobsen, 1988; Amakawa et al., 2004, 2009; Horikawa et al., 2011] due to the more positive (radiogenic) Nd isotope composition of the volcanic rocks that surround the Pacific [cf. Jeandel et al., 2007]. End-members from these main source areas mix in the Southern Ocean, resulting in ε_{Nd} signatures near $−8.5$ for CDW [Piepgras and Wasserburg, 1982; Carter et al., 2012; Stichel et al., 2012a; Garcia-Solsona et al., 2014; Molina-Kescher et al., 2014a]. Tracing the mixing of water masses along the thermohaline circulation pathway in the open ocean is possible due to the intermediate oceanic residence time of Nd of $−400$–2000 years [Tachikawa et al., 2003; Arsouze et al., 2009; Rempfer et al., 2011], which is similar to the global ocean mixing time. In the water column of near-coastal regions, where Nd is introduced into seawater and in high-productivity areas with high particulate fluxes, dissolved Nd isotopes show nonconservative behavior that complicates or sometimes prevents their use as water mass tracers [Lacan and Jeandel, 2005; Rempfer et al., 2011; Singh et al., 2012; Stichel et al., 2012b; Grasse et al., 2012; Pearce et al., 2013]. This is, however, clearly not the case for the South Pacific, where the present-day dissolved Nd isotope compositions fully match the different deep and middepth water masses according to their hydrographic parameters, such as oxygen concentrations [Molina-Kescher et al., 2014a]. In addition, the reliable extraction of the authigenic, seawater-derived signature recorded in the sediments is sometimes hampered by easily dissolving volcanic particles or preformed coatings [Gutjahr et al., 2007; Roberts et al., 2010, 2012; Elmore et al., 2011; Piotrowski et al., 2012; Wilson et al., 2013; Kraft et al., 2013; Tachikawa et al., 2014]. For the South Pacific, including core top data for the cores of this study, Molina-Kescher et al. [2014b] comprehensively evaluated ε_{Nd} signatures from different sedimentary phases for their suitability to infer seawater Nd isotope compositions. Those data clearly documented that unclean foraminifera reliably recorded the authigenic signal. In addition, despite that the core locations of this study are on the slope of the East Pacific Rise, any hydrothermal influence on the Nd isotope signatures can be excluded based on the complete removal of hydrothermal Nd within the hydrothermal vents [German et al., 1990; Halliday et al., 1992], which even allows hydrothermal sediments to be used as archives for the Nd isotope composition of seawater [Chavagnac et al., 2006]. Also, the long distance of the study area from any continent or volcanic island makes contamination by volcanic ashes very unlikely.

Lead (Pb) isotopes behave similarly to Nd isotopes in seawater in that water masses from different oceanic basins present characteristic isotopic ratios as a consequence of the inputs from weathered continental rocks of different type and ages [cf. Frank, 2002]. In contrast to Nd isotopes, Pb isotopes undergo incongruent weathering resulting in the radiogenic Pb isotopes (^{206}Pb, ^{207}Pb, and ^{208}Pb) to be preferentially mobilized during weathering in comparison to primordial ^{204}Pb [Chow and Patterson, 1959, 1962; Frank, 2002]. In addition, hydrothermal inputs may play a role for local oceanic Pb budgets and the short residence time of Pb in seawater (~50 to 200 years) [Schauie and Patterson, 1981; von Blanckenburg and Igel, 1999] restricts its applicability to short-distance water mass mixing and tracing of lithogenic inputs. Nonetheless, differentiation of the admixture of deep water signatures from the Pacific and Atlantic to Circumpolar Deep Water (CDW) along its pathway is possible due to the very high current speeds and volume transport of the ACC [Abouchami and Goldstein, 1995].

The long residence time of Sr in seawater (~2 Ma), as a consequence of its low particle reactivity, impedes the use of radiogenic Sr isotopes as water mass tracer. Nevertheless, the Sr isotope signature of the detrital fraction of the sediment, in particular in combination with Nd isotopes, is a powerful tool for tracing the
climatically driven variability of the provenance of lithogenic material supplied to the Southern Ocean [e.g., Franzese et al., 2006; Noble et al., 2012]. This study is focused on two sediment cores located on the East Pacific Rise in the central South Pacific. The midlatitude (35°S to 50°S) South Pacific between New Zealand and South America is dominated by a complex deep water circulation pattern, which is schematically shown in Figure 1. The locations of sediment cores of this study are indicated by red dots: SO213-59-2 (latitude 45°49.736′S, longitude 116°52.761′W, 3161 m water depth), SO213-60-1 (latitude 44°57.831′S, longitude 119°33.071′W, 3471 m water depth). The locations of cores CHAT 1K and CHAT 5K (3556 m and 4240 m water depth, respectively) [Elderfield et al., 2012; Noble et al., 2013]; E20-18, E25-10, and RC12-225 (2869 m, 2891 m, and 2964 m water depth, respectively) [Matsumoto and Lynch-Stieglitz, 1999]; and E11-2 (3094 m water depth) [Ninnemann and Charles, 2002] referred to in the text are also included as blue dots. The red triangle marks the water sampling station 54 (latitude 43°S, longitude 120°W, 3842 m water depth) closest to the sediment core locations, where seawater Nd isotope data are available [Molina-Kescher et al., 2014a]. On the bottom right corner of the figure, an oxygen section of the area at ~43°S is provided, which represents the structure of the water column and the different water masses, together with the location of some of the studied cores.

This study is focused on two sediment cores located on the East Pacific Rise in the central South Pacific. The midlatitude (35°S to 50°S) South Pacific between New Zealand and South America is dominated by a complex deep water circulation pattern, which is schematically shown in Figure 1. The DWBC (147Nd ~ 9.7) [Molina-Kescher et al., 2014a], which detaches from the Antarctic Circumpolar Current (ACC) in the western South Pacific, represents the entrance of deep waters into the Pacific. The exit and reintroduction of old middepth waters (mainly modified North Pacific Deep Water, NPDW, 147Nd ~ 5.9) [Molina-Kescher et al., 2014a] flowing from the North Pacific into the ACC occurs in the eastern South Pacific, close to South America (see Molina-Kescher et al. [2014a] for a detailed description of the hydrography in the study area). CDW dominates the deep central South Pacific [Kawabe and Fujio, 2010], although central Pacific waters also exert some influence at the location of our cores [Reid, 1986; Molina-Kescher et al., 2014a], which today displays seawater 147Nd signatures of ~6.6 [Molina-Kescher et al., 2014a]. The Ross Sea is one of the main formation regions of AABW, which occupies the abyssal Southeast Pacific Basin and is characterized by 147Nd signatures near ~7 [Rickli et al., 2014; Basak et al., 2015], but it is not able to cross the East Pacific Rise and the Pacific Antarctic Ridge toward the Southwest Pacific Basin (e.g., the location of our cores) due to its high density [Orsi et al., 1999].

In this study, we report evidence based on three independent proxies that have been widely used to track past deep water advection and mixing processes, namely, authigenic, seawater-derived Nd and Pb isotopes, and δ^{13}C signatures of benthic foraminifera, to reconstruct past changes in central South Pacific deep ocean circulation. Additionally, we show detrital Nd and Sr isotope signatures to infer climatically driven changes in the inputs of detrital material to this region.
2. Samples and Methods

Two gravity cores, SO213-59-2 and SO213-60-1 (from here on referred to as Core 59 and Core 60, respectively), from 3161 m and 3471 m water depth, respectively, obtained on the western flank of the East Pacific Rise in the central South Pacific (44°–46°S, 117°–119°W) (Figure 1) aboard the German R/V Sonne during expedition SO213 (December 2010 to March 2011) [Tiedemann et al., 2012] were analyzed for stable oxygen (δ¹⁸O) and carbon (δ¹³C) isotope compositions of benthic foraminifera and for radiogenic neodymium (εNd), strontium, and lead isotope compositions of the authigenic and detrital phases of the sediments. The central South Pacific is an area of very low sedimentation rates, which is why we chose not to base our interpretations on the records of one core only.

2.1. Stable Oxygen (δ¹⁸O) and Carbon (δ¹³C) Isotope Analysis

Stable isotope (δ¹⁸O and δ¹³C) analyses were performed on the benthic foraminiferal species Cibicidoides wuellerstorfi for Core 59 (δ¹⁸O data are already published in Tapia et al. [2015]) and Uvigerina peregrina for Core 60 (~10 individuals of the size fraction >250 μm for both cores). The benthic oxygen isotope variations served to establish the stratigraphy, while δ¹³C was intended to be used as a tracer for changes in water mass mixing and to estimate the potential effects of bioturbation on the low sedimentation rate records.

Isotopic analyses were performed on a ThermoScientific MAT 253 mass spectrometer coupled with a KIEL IV Carbonate device at AWI and GEOMAR for Core 59 and Core 60, respectively. Results were referenced to the NBS19 standard and calibrated to VPDB. Analytical errors were ±0.03 for both δ¹⁸O and δ¹³C.

2.2. Nd, Pb, and Sr Isotope Analysis

Seawater Nd and Pb isotope compositions recorded by early diagenetic, authigenic Fe-Mn coatings that precipitate on sediment particles were used to track deep water circulation changes, whereas Nd and Sr isotopes obtained from the continent-derived silicate fraction were used for identifying changes in provenance and inputs of lithogenic material, mainly of dust.

For the extraction of deep water Nd isotope signatures recorded by Fe-Mn coatings we applied the “unclean” planktic foraminifera technique [e.g., Roberts et al., 2010; Tachikawa et al., 2014] on 63 samples of Core 59 and 40 samples of Core 60. This method has been proven to faithfully reconstruct the Nd isotope composition of deep water in our study area [Molina-Kescher et al., 2014b] and other oceanographic regions [e.g., Roberts et al., 2010; Kraft et al., 2013; Tachikawa et al., 2014]. The extraction includes the dissolution of clay-free mixed planktic foraminifera without a preceding separation of Fe-Mn coatings. We also applied a “nondecarbonated” bulk sediment leaching technique, which has proven to be the most reliable leaching method for the isolation of the authigenic Nd from the coatings of bulk sediments [Wilson et al., 2013; Molina-Kescher et al., 2014b], on 12 samples of each of the two cores to obtain authigenic Pb isotope compositions and to compare the methods for the extraction of seawater-derived Nd isotope compositions. The latter method consists in the leaching of bulk sediment using a 0.05 M hydroxylamine hydrochloride/15% acetic acid solution (HH) buffered to pH 3.6 with NaOH without preceding carbonate removal. In addition, two fish teeth found in Core 60 and one for Core 59 were analyzed to confirm the seawater origin of the extracted Nd isotope compositions, given that this archive has been demonstrated to faithfully record past seawater εNd signatures [e.g., Martin and Scher, 2004].

Detrital Nd and Sr isotope signatures were obtained on the 24 previously leached bulk sediment samples of Core 59 and Core 60 (plus two more samples for the latter) to track changes in the provenance of the detrital silicates supplied to the core locations. These 26 samples, after a second HH leach of 24 h, were totally digested using a mixture of concentrated HNO₃ and HF. After dissolution all samples underwent a two-step ion chromatographic separation following previously published methods to isolate and purify Nd [Barrat et al., 1996; Le Fevre and Pin, 2005], Sr [Horwitz et al., 1992], and Pb [Galer and O’Nions, 1989; Lugmair and Galer, 1992].

To measure the isotopic ratios of Nd, Sr, and Pb, we used a Nu Plasma MC-ICPMS at GEOMAR using ratios of 0.7219 for ¹⁴⁶Nd/¹⁴⁴Nd and 0.1194 for ⁸⁸Sr/⁸⁶Sr to correct for instrumental mass bias. Pb isotope compositions were measured using a standard-sample bracketing method [Albarède et al., 2004]. Nd and Sr isotope ratios were corrected for ¹⁴⁴Sm and ⁸⁶Kr, ⁸⁷Rb interferences, respectively. All results were normalized to the accepted values of 0.512115 (JNd1-1 standard [Tanaka et al., 2000]) for ¹⁴⁳Nd/¹⁴⁴Nd, 0.710245 (NIST
Table 1. Results of This Study Averaged for Isotopic Stages\(^a\)

<table>
<thead>
<tr>
<th>Stages</th>
<th>(\delta^{18}O)</th>
<th>2(\sigma)</th>
<th>n</th>
<th>SD</th>
<th>(\delta^{13}C) Benthic</th>
<th>2(\sigma)</th>
<th>n</th>
<th>SD</th>
<th>(\sigma_{Nd}) Forams</th>
<th>2(\sigma)</th>
<th>n</th>
<th>SD</th>
<th>(\sigma_{Nd}) Leachates</th>
<th>2(\sigma)</th>
<th>n</th>
<th>SD</th>
<th>(\sigma_{Nd}) Detritus</th>
<th>2(\sigma)</th>
<th>n</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holocene</td>
<td>3.15 ±0.06</td>
<td>9</td>
<td>0.24</td>
<td>0.34</td>
<td>±0.07</td>
<td>9</td>
<td>0.18</td>
<td>-5.78</td>
<td>±0.25</td>
<td>5</td>
<td>0.29</td>
<td>-5.95</td>
<td>±0.40</td>
<td>1</td>
<td>-</td>
<td>-5.24</td>
<td>±0.24</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIS 2</td>
<td>4.21 ±0.06</td>
<td>22</td>
<td>0.17</td>
<td>-0.05</td>
<td>±0.07</td>
<td>22</td>
<td>0.10</td>
<td>-5.22</td>
<td>±0.25</td>
<td>6</td>
<td>0.54</td>
<td>-5.33</td>
<td>±0.40</td>
<td>1</td>
<td>-</td>
<td>-3.76</td>
<td>±0.24</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Interglacial (MIS 3 + 4 + 5)</td>
<td>3.79 ±0.06</td>
<td>78</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>78</td>
<td>0.19</td>
<td>-5.80</td>
<td>±0.25</td>
<td>26</td>
<td>0.20</td>
<td>-5.52</td>
<td>±0.40</td>
<td>5</td>
<td>0.18</td>
<td>-4.70</td>
<td>±0.24</td>
<td>5</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>(MIS 6)</td>
<td>4.19 ±0.06</td>
<td>16</td>
<td>0.20</td>
<td>-0.36</td>
<td>±0.07</td>
<td>16</td>
<td>0.18</td>
<td>-5.29</td>
<td>±0.25</td>
<td>11</td>
<td>0.18</td>
<td>-4.06</td>
<td>±0.40</td>
<td>2</td>
<td>0.09</td>
<td>-4.28</td>
<td>±0.24</td>
<td>2</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>MIS 7</td>
<td>3.90 ±0.06</td>
<td>21</td>
<td>0.40</td>
<td>-0.20</td>
<td>±0.07</td>
<td>21</td>
<td>0.32</td>
<td>-5.69</td>
<td>±0.25</td>
<td>15</td>
<td>0.32</td>
<td>-4.96</td>
<td>±0.40</td>
<td>3</td>
<td>0.57</td>
<td>-5.34</td>
<td>±0.24</td>
<td>3</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>3.75 ±0.06</td>
<td>108</td>
<td>0.35</td>
<td>0.08</td>
<td>±0.07</td>
<td>108</td>
<td>0.27</td>
<td>-5.76</td>
<td>±0.25</td>
<td>46</td>
<td>0.26</td>
<td>-5.37</td>
<td>±0.40</td>
<td>8</td>
<td>0.50</td>
<td>-5.08</td>
<td>±0.24</td>
<td>8</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>Average Interglacials(^b)</td>
<td>4.20 ±0.06</td>
<td>38</td>
<td>0.18</td>
<td>-0.18</td>
<td>±0.07</td>
<td>38</td>
<td>0.21</td>
<td>-5.26</td>
<td>±0.25</td>
<td>17</td>
<td>0.33</td>
<td>-4.73</td>
<td>±0.40</td>
<td>4</td>
<td>0.78</td>
<td>-4.11</td>
<td>±0.24</td>
<td>4</td>
<td>0.27</td>
<td></td>
</tr>
</tbody>
</table>

\[^{a}\] The averages for each stage were calculated using all available data points for each period (n) (see data in Tables S1 and S2). "SD" stands for standard deviation of "n."

\[^{b}\] Including here glacial MIS 4.
NBS987) for 87Sr/86Sr, and to the accepted values of NBS981 [Abouchami et al., 1999] for Pb isotopes. The external reproducibilities (2σ) of the Nd, Sr, and Pb isotope measurements during each session were assessed by repeated measurements of the above standards matching sample concentrations and ranged between 0.2 and 0.4 εNd units, between 0.00004 and 0.00012 for 87Sr/86Sr, and 0.015 for 206Pb/204Pb, 0.0001 for 207Pb/206Pb, and 0.015 for 208Pb/204Pb (see Table 1).

2.3. Stratigraphy

The age models of Cores SO213-59-2 and SO213-60-1 are based on δ¹⁸O records of the benthic foraminifera species *Cibicidoides wuellerstorfi* and *Uvigerina peregrina*, respectively, tuned to the global benthic δ¹⁸O stack LR04 [Lisiecki and Raymo, 2005] for the past ~240,000 years (Core 59) and ~221,000 years (Core 60) (Figure 2c). The age model of Core 59 [Tapia et al., 2015] is supported by two ¹⁴C accelerator mass spectrometer (AMS) ages at 10.7 ± 0.1 and 33.5 ± 0.4 kiloyears before present, further on referred to as ka B.P. The sediments of this core were deposited at low sedimentation rates between 0.4 cm ka⁻¹ B.P. and 1.5 cm ka⁻¹ B.P. but nevertheless allow a clear differentiation of the most prominent orbitally forced climatic transitions of the last two glacial cycles. The glacial marine isotope stages (defined after Lisiecki and Raymo [2005]) MIS 6 (191–130 ka B.P.) and 2 (29–14 ka B.P.) yield an average benthic δ¹⁸O value of 4.2‰, identical to average global and South
Paciﬁc Last Glacial Maximum (LGM) values for the same species [Matsumoto and Lynch-Stieglitz, 1999]. The δ18O difference between available Holocene samples (7–14 ka B.P.) and the maxima of the glacial periods MIS 2 and MIS 6 is 1.1‰, close to the expected global ice volume change of 1.2‰ [Elderﬁeld et al., 2012]. The last interglacial (29–130 ka B.P.), here represented by MIS 3 to MIS 5 (including short glacial MIS 4, which cannot be clearly distinguished in our record), displays a progressive transition from minimum δ18O values of ~3‰ at MIS 5e (~126 ka B.P.) to maximum values of ~4.6‰ recorded for the LGM.

Despite the fact that the age model of second Core 60 lacks 14C datings, the stratigraphy is well constrained by the benthic δ18O curve and fully supported by biostratigraphic and paleomagnetic data. Core 60 presents lower sedimentation rates (0.4 cm ka B.P./C0 to 1.0 cm ka B.P./C0) than Core 59, but the benthic oxygen isotope data show the expected glacial-interglacial amplitudes in both cores (Figure 2c), therefore discarding signiﬁcant bioturbation effects on the records. The offset observed between the two δ18O records is most probably due to a vital effect between the two species, given that Cibicidoides wuellerstorfi lives epifaunally, whereas Uvigerina peregrina is a shallow infaunal species [Gooday, 2003]. The Holocene is only covered by one sample for this core at 11 ka.

3. Results

3.1. Authigenic Nd Isotopes

Deep water Nd isotope compositions obtained from unclean foraminifera of Cores 59 and 60, which are at present bathed in CDW, yield within error the same average εNd signatures of −5.6 and −5.7, respectively. Both cores recorded only relatively small variations during the entire investigated period of time (Figure 2a), which reﬂects the mixing proportions of the different water masses contributing to CDW. In general, less radiogenic εNd signatures prevailed during interglacial periods, which average −5.8 in both cores and show minimum εNd values of −6.1. In contrast, the most radiogenic εNd signatures occurred during glacial periods with averages of −5.3 for Core 59 and −5.6 for Core 60, with maximum εNd values of up to −4.2. The consistent difference between the glacial and interglacial εNd averages (Table 1) is small for both cores, but it is systematic and signiﬁcant, at least in the case of higher resolved Core 59. The data of Core 60 generally follow the same trend as Core 59 including a radiogenic peak near the LGM and a clear transition from more radiogenic, “Paciﬁc-like” (−4.9) to less radiogenic “Southern Ocean-like” (−6.1) εNd values at the MIS 6 to MIS 5 transition. Only in the interval between 159 and 181 ka B.P. in Core 60, two samples clearly deviate toward less radiogenic values (−6 and −6.4 εNd units) and thus do not match the general trend displayed by Core 59 (Figure 2a). A fish tooth Nd isotope signature from a section with an age of 164 ka B.P. in Core 59 conﬁrms the overall more positive glacial εNd signatures obtained from the unclean foraminifera of MIS 6. The two fish teeth found in Core 59 at 20.6 ka B.P. (εNd = −5.1) and 63.1 ka B.P. (εNd = −5.6) match the corresponding unclean foraminifera data within error.

The εNd signatures of the nondecarbonated leachates of Core 59 (Figure 3a) are within error identical to those of the unclean foraminifera in the younger part of the core between MIS 5 and the present. For
MIS 6 and most of MIS 7 the leachate data are significantly more radiogenic and closely match the detrital data, suggesting contamination with the latter fraction of the sediment (see section 4.1). Leachate Nd isotope signatures of Core 60 (Figure 3b) are identical within error to the detrital and unclean foraminifera data for most samples, and there are no systematic offsets between the two methods for extraction of the seawater signatures.

3.2. Authigenic Pb Isotopes

$^{206}\text{Pb}/^{204}\text{Pb}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ leachate results of both cores chosen for display in Figure 4 (see also Table 1 and supporting information Tables S1 and S2) show values similar to Fe-Mn nodules obtained from the central South Pacific at similar latitudes [Abouchami and Goldstein, 1995]. The glacial-interglacial variations in the Pb isotope ratios in both records are relatively small but clearly significant. They are consistent between the two locations and of essentially the same amplitude of glacial to interglacial change (Figure 4). The variability follows the same pattern as the seawater-derived ε_{Nd} signatures and the benthic $\delta^{13}\text{C}$ values in that more Pacific-like signatures prevailed during glacial stages, suggesting a common factor controlling the changes of the three different deep water circulation proxies (see section 4.2).

3.3. Benthic Carbon Isotopes

The variations in the benthic $\delta^{13}\text{C}$ signature of Core 59 recorded by Cibicidoides wuellerstorfi follow trends very similar to those of benthic $\delta^{18}\text{O}$ of the same record (Figure 2). The LGM (19–23 ka) to Holocene (youngest available data: 7–8 ka) difference in $\delta^{13}\text{C}$ reaches 0.51‰, which is 0.12‰ larger than recent estimates of terrestrial carbon reservoir changes for the South Pacific of 0.39‰ [Peterson et al., 2014]. Glacial stages MIS 2 and MIS 6 display markedly different average $\delta^{13}\text{C}$ values (-0.05 and -0.36, respectively), which differ considerably between each other, with a sharp drop of about 0.7‰ observed for the MIS 7 to MIS 6 transition. These values are similar to those of other studies from the Southern Hemisphere [Oliver et al., 2010; Peterson et al., 2014], in general, and from the central South Pacific [Matsumoto and Lynch-Stieglitz, 1999; Ninnemann and Charles, 2002] in particular (Figure 5), supporting the absence of significant effects of bioturbation on the record of our core. Benthic $\delta^{13}\text{C}$ signatures of Core 60 (Figure 2b), obtained from infaunal species Uvigerina peregrina, display slightly less pronounced changes though with similar amplitude and overall lighter carbon isotope compositions than Core 59 as a consequence of growth from isotopically light pore waters due to respiration processes [Ravelo and Hillaire-Marcel, 2007].

3.4. Detrital Provenance Proxies (Nd and Sr Isotopes)

Nd and Sr isotopes obtained from the detrital fraction of the sediment serve to trace provenance of continental-derived silicates arriving in the central South Pacific during the studied interval of time. Except for one sample of the last interglacial at 93.5 ka B.P. (MIS 5c), the detrital ε_{Nd} signatures of Core 59 (black
diamonds on Figure 3a) show glacial-interglacial variations oscillating between more radiogenic glacial signatures (−3.5 to −4.5) and less radiogenic interglacial signatures (−5 to −6) suggesting systematic changes in the provenance of the lithogenic material that reached the study area during cold and warm periods (see section 4.3). A higher proportion of mantle-like source rocks prevailed during glacial periods. Except for a radiogenic peak value near −4 at the LGM, the glacial/interglacial differences in the detrital ε_{Nd} data of Core 60 are less pronounced than for Core 59, ranging between −5 and −6 (black squares in Figure 3b).

Detrital Sr isotope ratios ($^{87}Sr/^{86}Sr$) show a small range between 0.7092 and 0.7095 for Core 59 and between 0.7092 and 0.7102 for Core 60 (Figure 4c). While Core 59 does not reveal systematic glacial-interglacial detrital $^{87}Sr/^{86}Sr$ variations, Core 60 shows peaks of radiogenic values during glacial periods indicating a lower proportion of mantle-derived source rocks.

4. Discussion

4.1. Reliability of the Nd and Pb Isotope Data as Recorder of Past Deep Water Circulation

Before we interpret the extracted deep water Nd isotope signatures, their reliability needs to be evaluated. Fossil fish teeth are known to faithfully record the Nd isotope composition of bottom waters of the past [Martin and Scher, 2004]. The three fossil fish teeth measured in this study display within error the same ε_{Nd} signatures as unclean foram fractions of the same samples (Figures 2 and 3 and Tables S1 and S2). Comparison to the Nd isotope compositions of the detritus (Figure 3) supports the absence of any significant contamination of the seawater signal extracted from the foraminifera in agreement with the results obtained for the surface sediments [Molina-Kescher et al., 2014b]. In particular, the detrital ε_{Nd} signatures of Core 59 (Figure 3a) in most cases show considerably more radiogenic ε_{Nd} values than the unclean foram fraction, which is most pronounced during glacial periods, when the detritus reached the most positive values and the difference to the unclean foram data amounted to up to 1.6 ε_{Nd} units. In core 60-2 (Figure 3b), most of the detrital and unclean foram Nd isotope compositions are similar.

In addition to the above considerations, both cores recorded consistent LGM (~21 ka B.P.) to early Holocene trends from more radiogenic (5.0 ± 0.3 and −5.3 ± 0.3 for Cores 59 and 60, respectively) to less radiogenic ε_{Nd} signatures (−6.1 ± 0.3 at 7.1 ka B.P. for Core 59 and −6.0 ± 0.3 at 11.3 ka B.P. for Core 60) of the unclean foraminifera (Figure 2a). These youngest samples available for our cores agree within error with present-day seawater signatures at the same location [Molina-Kescher et al., 2014a], which displays a value of −6.5 ± 0.2 at 3842 m water depth (see Figure 2a). An essentially identical trend is observed for the transition from MIS 6 to MIS 5 on both cores. Although generally low sedimentation rates of 0.5–2 cm ka B.P.$^{-1}$ prevail in the study area [Tiedemann et al., 2012], any influence of bioturbation on the amplitudes of the changes in Nd isotope signatures is considered negligible given that the benthic oxygen and carbon isotope data (see section 4.2.2.) show the expected glacial-interglacial amplitudes in both cores.

The nondecarbonated leachates did apparently not always record the seawater signal as reliably as the unclean forams. This is most evident in Core 59 (Figure 3a), where leachates faithfully follow the seawater curve of the foraminifera back to 130 ka B.P., whereas prior to that, the similarity between the detrital and leachate signatures suggests a possible contamination of the latter by partial dissolution of the lithogenic fraction during the leaching process. Certainly, this issue does not affect the unclean foraminifera data as confirmed by the fish tooth found at 164 ka B.P. in Core 59 (ε_{Nd} −5.4), which matches the foraminifera data.
Contributions from sedimentary pore waters [Hailey et al., 2004; Abbôt et al., 2015a, 2015b] may have affected the nondecarbonated leach signal of the older part of Core 59, despite that this core was retrieved on a low sedimentation rate area not prone to develop anoxic conditions in subsurface sediments and to the release of significant sedimentary REE fluxes. Further evidence for the absence of a significant pore water influence on the unclean foraminifera \(\varepsilon_{Nd} \) data on this area comes from the typical seawater pattern of normalized Post-Archean Australian Sedimentary Rock (PAAS) REEs observed on core tops [see discussion in Molina-Kescher et al. (2014b)]. Leachates of Core 60 (Figure 3b) show \(\varepsilon_{Nd} \) values similar to those of the forams and the detritus. Given the differences observed in Core 59, we will only use the unclean foraminifera data of both cores for the paleoceanographic interpretations of this study, which have been documented to reliably record past deep water signatures in the South Pacific and other areas [Roberts et al., 2010; Kraft et al., 2013; Tachikawa et al., 2014; Molina-Kescher et al., 2014b]

The Pb isotope data were obtained using the nondecarbonated leach technique, but the absence of detrital Pb isotope data does not allow the evaluation of a possible detrital contamination from pore waters. However, the very high particle reactivity of Pb makes any mobilization from pore waters highly unlikely and the leaching method has been shown to yield reliable seawater Pb isotope data [Gutjahr et al., 2009; Stumpf et al., 2010; Crocket et al., 2012; Wilson et al., 2015b; Teschner et al., 2016] and the consistent glacial-interglacial variations, as well as the close agreement of our Pb isotope results with the ferromanganese crust data of Abouchami and Goldstein [1995] for the same region support the validity of our results.

4.2. Changes in the Deep Water Circulation of the Last Two Glacial Cycles

Nd, Pb, and C isotopes of Core 59 (Figures 2 and 4) generally show consistent glacial-interglacial variations indicating more Pacific-like signatures during glacial periods. Paleoceanographic changes in the South Pacific Ocean have been poorly studied compared to other oceanic regions, but there is evidence for a deepening of NPDW during the last glacial period [Keigwin, 1998; Matsumoto and Lynch-Stieglitz, 1999; Matsumoto et al., 2002; Huang et al., 2014]. Although these changes may partly explain the glacial-interglacial variations observed in our data, the flow of NPDW from the Pacific into the Southern Ocean today principally occurs at middepths of the eastern South Pacific [e.g., Kawabe and Fujio, 2010; Molina-Kescher et al., 2014a], whereas the central South Pacific is not an exit of Pacific deep waters to the ACC. Rather, this area represents a main entrance area of UCDW flowing into the Pacific, although at shallower depths than the location of our cores [see Kawabe and Fujio, 2010]. Therefore, it is unlikely that a deepening or stronger production of NPDW during glacial stages fully explains the long-term deep water circulation changes observed in the central South Pacific. Instead, these processes would be better recognizable in the eastern South Pacific, where a more vigorous glacial advection of NPDW may have occupied parts of the SE Pacific Basin during the last glacial period that are today dominated by Circumpolar Deep Water [Molina-Kescher et al., 2014b].

Given the position of our cores (44°–46°S), the bathymetry of the South Pacific, and the eastward flow of the ACC (see circulation scheme in Figure 1), it is also very unlikely that dense AABW formed in the Ross Sea (Ross Sea Deep Water) and characterized by \(\varepsilon_{Nd} = \sim -7.0 \) [Rickli et al., 2014; Basak et al., 2015], reached the western flank of the E Pacific Rise at the water depth of our cores in the past. Our data do also not support a hypothetical admixture of AABW formed in the Weddell Sea during glacialis as this water mass is characterized by significantly less radiogenic \(\varepsilon_{Nd} \) signatures (−9.5) [van de Flierdt et al., 2007; Stichel et al., 2012a].

In contrast, there is compelling paleoceanographic evidence deduced from both carbon [e.g., Boyle and Keigwin, 1986; Duplessy et al., 1988; Charles and Fairbanks, 1992; Ninnemann and Charles, 2002; Curry and Oppo, 2005; Gebbie, 2014] and Nd isotopes [Rutberg et al., 2000; Piotrowski et al., 2004, 2005, 2008, 2009, 2012; Noble et al., 2013] indicating reduced NADW export to the Southern Ocean during cold climate stages of the past. Combination with Pa/Th ratios [e.g., McManus et al., 2004; Roberts et al., 2010; Böh m et al., 2015] showed a shoaling of NADW [Curry and Oppo, 2005; Adkins, 2013; Ferrari et al., 2014; Böh m et al., 2015; Wilson et al., 2015a] and a reduced NADW production [Piotrowski et al., 2005; Robinson and van de Flierdt, 2009; Peña and Goldstein, 2014]. Hence, the diminished contribution of NADW to CDW during cold stages is the most probable explanation for the variations observed in our Nd and the Pb isotope data.

4.2.1. Nd and Pb Isotope Evidence of Decreased Admixture of NADW to CDW

At the present day, the western flank of the East Pacific Rise at the depth of our core locations between 3000 and 3500 m is mainly bathed in CDW (see Figure 1). Nevertheless, the present-day hydrographic properties also indicate a significant influence of Pacific-derived waters at this location and depth as reflected by
relatively radiogenic Nd isotope compositions (143Nd/144Nd = 6.5) as well as decreased oxygen levels (~3.8 mL/L) and elevated phosphate concentrations (2.16 mmol/L) [Molina-Keschere et al., 2014a]. For comparison, pure Lower CDW (LCDW) in the Southwest Pacific Basin is characterized by $\varepsilon_{Nd} = 8.3$, $[O_2] = 4.4$ mL/L and $[Phosphate] = 2.07$ mmol/L [Molina-Keschere et al., 2014a]. Therefore, the admixture of Pacific central waters to the deep waters of the study area further dilutes the fraction of NADW present in CDW, which contributes to the relatively small glacial-interglacial Nd isotope variations. This dilution effect with Pacific central waters is also evident when comparing our ε_{Nd} record of Core 59 to Holocene and LGM Nd isotope compositions obtained at CHAT 5K and CHAT 1K (Figure 6) on Chatham Rise in the western South Pacific from a water depth of 3290 m [Elderfield et al., 2012; Noble et al., 2013], which is located in the main entrance area of CDW into the Pacific Basin and consequently still contains a higher proportion of NADW compared to the central South Pacific [Reid and Lynn, 1971; Warren, 1973; Gordon, 1975; McCave et al., 2008]. The LGM to Holocene amplitude of the change of Cores CHAT 1K and CHAT 5K (~2 ε_{Nd} units) is significantly larger than that observed for Core 59 (1 to 1.5 ε_{Nd} units) consistently reflecting the higher proportion of unradiogenic NADW within CDW for Sites CHAT 1K and CHAT 5K.

The presence of NADW on deep waters of the Southern Hemisphere decreases along the flow path of the deep THC toward the east, reflecting the progressive dilution of NADW as it mixes with other water masses. This is reflected by the overall progressively more radiogenic ε_{Nd} signatures and the decrease of the glacial/interglacial Nd isotope differences (Figure 6) from the South Atlantic (red squares: Core RC11-83/TNO57-21) [Piotrowski et al., 2008] and the Indian Ocean (yellow diamonds: Core SK129-CR2) [Piotrowski et al., 2009; Wilson et al., 2015a] via the western South Pacific (green triangles: Cores CHAT 1K and CHAT 5K) [Elderfield et al., 2012; Noble et al., 2013] to the central South Pacific (blue circles: Core 59, this study). Although a change in the preformed Nd isotope composition of NADW through time cannot be completely excluded [Gutjahr et al., 2008; Wilson et al., 2014], we here assume no change on glacial-interglacial time scales based on evidence inferred from Fe-Mn crust and deep water coral data from the western North Atlantic [Foster and Vance, 2006; van de Flierdt et al., 2006]. Therefore, either a reduction in the production rate and admixture of NADW [e.g., Piotrowski et al., 2005; Robinson and van de Flierdt, 2009; Pena and Goldstein, 2014], a shoaling of the latter [e.g., Wilson et al., 2015a; Adkins, 2013], or a combination of both processes during cold stages is the most probable explanation for the ε_{Nd} variations observed in the Southern Ocean locations presented in Figure 6.

Figure 6. Comparison of Southern Hemisphere Nd isotope (${\varepsilon_{Nd}}$) records from comparable water depths but different oceanic settings (see inset map) covering similar time scales. Increasing ${\varepsilon_{Nd}}$ (note reverse scale) implies gradually diminishing influence of NADW toward east. Red squares: cores RC11-83/TNO57-21 from 4718/4981 m water depth [Piotrowski et al., 2005, 2008]; yellow diamonds: core SK129-CR2 from 3800 m water depth [Piotrowski et al., 2009; Wilson et al., 2015a]; green triangles and crosses: cores CHAT 1K [Elderfield et al., 2012] and CHAT 5K [Noble et al., 2013] from 3556 m and 4240 m water depth, respectively; and blue circles: core SO213-59-2 from 3161 m water depth (this study). Shaded areas define full glacial marine isotope stages (MIS).
4.2.2. In signatures above. (Figure 7), in agreement with the changes in NADW admixture to CDW deduced from the Nd isotope for MIS 6, reaching δsimilarly heavier values for interglacial MIS 1 and 5, lighter values for glacial MIS 2, and the lightest ones material, arriving at present in the South Paci.

Kescher et al. Using combined Nd-Sr isotope compositions of the lithogenic fraction of the surface sediments, 4.3. Changes in the Detrital Provenance but additional data would be needed to unambiguously con amplitude and timing of any of the proxies measured in this study. The offset during sub-MIS 7d (~230 ka δ13C variation. There are a number of δ13C compilations for longer periods of time, including the most recent one by Oliver et al. [2010] for the last 150 ka B.P. The latter study documents similarly heavier values for interglacial MIS 1 and 5, lighter values for glacial MIS 2, and the lightest ones for MIS 6, reaching δ13C signatures of Cibicidoides as low as ~0.6. The authors assigned most of the glacial-interglacial variation to changes in carbon storage in the biosphere on land and also inferred modulations by changes in ocean circulation, productivity, and air-sea gas exchange. Figure 8 compares the benthic δ13C data from our study (Core 59) to records from the central and western South Pacific [Ninnemann and Charles, 2002; Elderfield et al., 2012], the central equatorial Pacific [Mix, 1995], and the equatorial Indian Ocean [Piotrowski et al., 2009]. The variations in benthic carbon isotopes of Core 59 are very similar to those observed in other locations of the Pacific and even the interior of the Indian Ocean, further supporting a dominant role of terrestrial-oceanic carbon transfer in modulating the δ13C variations. Only E11-2 differs from the other records in terms of absolute values, although the amplitude of glacial-interglacial change is very similar. Importantly, these data also con firm the absence of any significant effects of bioturbation on the amplitude and timing of any of the proxies measured in this study. The offset during sub-MIS 7d (~230 ka B.P. and ~220 ka B.P.) between Core 59 and the other records may originate from local productivity changes, but additional data would be needed to unambiguously confirm this.

4.3. Changes in the Detrital Provenance Using combined Nd-Sr isotope compositions of the lithogenic fraction of the surface sediments, Molina-Kescher et al. [2014b] provided evidence on the provenance of the detrital, mainly eolian transported material, arriving at present in the South Pacific along ~40°S. On that study, the Nd-Sr isotope signatures

Figure 7. 206Pb/204Pb evolution of CDW along the ACC pathway as a consequence of decreased NADW contribution and comparison with glacial/interglacial signatures of the central South Pacific of this study. 206Pb/204Pb versus longitude along the ACC showing Pb isotope compositions of Fe-Mn nodules of the South Pacific (open circles) and the southwest Atlantic (black circles) (data from Abouchami and Goldstein [1995]) in comparison with Fe-Mn leachates of cores SO213-59-2 and SO213-60-1 (this study). The latter are separated into interglacial (red diamonds) and glacial (blue triangles) isotope ratios. Dashed lines indicate the change in the range of Pb isotope compositions of CDW with longitude. Figure modified from Abouchami and Goldstein [1995].

The small but significant variations found in the 206Pb/204Pb and 207Pb/206Pb records (Figures 3a and 3b) also confirm the lowered portion of North Atlantic sourced deep waters within CDW of the South Pacific. Abouchami and Goldstein [1995] presented a detailed study of the evolution of Pb isotope signatures along the pathway of Circumpolar Deep Water in the ACC (see Figure 7). Despite the short residence time of Pb in seawater, a continuous decrease of the 206Pb/204Pb ratio toward the east (East Atlantic/Indian > Pacific > West Atlantic) within CDW reflects the dilution of NADW along the pathway of CDW, with maximum values of 19.10 in the southern Indian Ocean and minimum values of 18.70 in the eastern South Pacific and western South Atlantic. The cores systematically show minimum values of ~18.73 for MIS 2 and the beginning of MIS 6 and maxima of ~18.78 during the Holocene, MIS 5, and MIS 7...
of the surface sediments from the Holocene and LGM (∼14C ages ranging 5 to 24 ka B.P.) fall onto a trend line between the volcanic Andean rocks of South America, which dominate the Chile Basin, and the diverse lithologies of Australia and South New Zealand (see inset in Figure 9), which dominate west of ∼110°W and reflect dust contributions transported by the dominant westerly winds (Figure 9) (see details in Molina-Kescher et al., Figure 8. Comparison of benthic δ13C records from comparable water depths in the Indian Ocean and the Pacific covering similar time scales. Yellow: core SK129-CR2 from 3800 m water depth [Piotrowski et al., 2009]; green: Ocean Drilling Program (ODP) Site 1123 from 3290 m water depth [Elderfield et al., 2012]; blue: core SO213-59-2 from 3161 m water depth (this study); purple: E11-2 from 3094 m water depth [Ninnemann and Charles, 2002]; and orange: ODP Site 849 from 3851 m water depth [Mix, 1995]. Shaded areas define full glacial marine isotope stages (MIS).

Figure 9. The role of different lithogenic sources contributing to the radiogenic Nd-Sr signal of detrital silicates of the South Pacific. Combined Nd and Sr isotope signatures of South Pacific core top and downcore detrital analyses are presented. The radiogenic isotope signatures of cores SO213-59-2 (triangles) and SO213-60-1 (circles) are separated into glacial (yellow) and interglacial (red) periods. The core top data from the open South Pacific (diamonds) [Molina-Kescher et al., 2014b] are given in black to light grey as a function of the distance to South America (see legend in the figure). The most probable detrital sources that surround the South Pacific are indicated as colored Sr-Nd isotope arrays: red: South Andean [Hickey et al., 1986; Futa and Stern, 1988] and Austral Andean rocks [Futa and Stern, 1988; Stern and Kilian, 1996]. Fine-grained particles (<5 μm) susceptible to eolian transport: yellow: North Island of New Zealand [Delmonte et al., 2004]; purple: South Island of New Zealand [Taylor et al., 1983; Delmonte et al., 2004]; blue: eastern Australia, whereby the Lake Eyre Basin is indicated by a circle [Revel-Rolland et al., 2006]; green: West Antarctic and Ross Sea detritus (combined from Roy et al. [2007] and Hemming et al. [2007]); and orange: Circum-Antarctic detritus from Wilkes Land (see inset) (combined from Roy et al. [2007] and Hemming et al. [2007]). MORB stands for Mid-Ocean Ridge Basalts. Note that the inset shows a larger range of potential source areas for Nd-Sr isotopes. The grey square marks the range of the large diagram.
Grain size sorting can cause fractionation of Sr isotopes [Innocent et al., 2000; Tütken et al., 2002], and the long distance of the closest continents to the two cores presented in this study only allows fine-grain detrital silicates to reach the study area. However, Nd isotopes are not significantly affected by grain size effects, and as Molina-Kescher et al. [2014b] demonstrated, the close correlation between Nd and Sr isotope compositions of the core top detrital silicates along a transect with increasing distance from the continental sources essentially excludes grain size sorting as the main controlling factor of the detrital Sr isotope variations of this region. We cannot exclude though that two small detrital radiogenic Sr isotope peaks of Core 60 were caused by short-term supply of finer-grained material. Therefore, the Nd-Sr isotope variability of the detrital material in Cores 59 and 60 provides information on past changes in the supply and provenance of the dust during the last ~240 ka B.P. although some Nd-Sr isotope fields of the source regions partly overlap. The interglacial data (red in Figure 9) closely match the Nd-Sr isotope signatures of the early Holocene core top samples (8–11 ka B.P.) obtained on the East Pacific Rise [Molina-Kescher et al., 2014b], indicating the dominance of the westerly winds carrying dust mainly from Australia and South New Zealand to the central South Pacific during warm periods [e.g., Albani et al., 2012; Lamy et al., 2014]. On the other hand, the glacial signatures are shifted toward more positive εNd values and in the case of Core 60 also show more positive Sr isotope ratios, which are shifted toward the arrays of South New Zealand and Australian fine sediments of fluvioglacial origin and loess (blue and purple fields in Figure 9), which partially overlap with Nd-Sr isotope signatures from West Antarctica and detritus from the Ross Sea (green field in Figure 9). Due to the predominantly eastward directed water flow and wind pathways in these latitudes, these results clearly exclude any increase in glacial supply of material from South America to the open South Pacific. Ice-rafter debris was not found in either of the two investigated cores, essentially excluding icebergs as a significant means of transport. Chase et al. [2003] observed enhanced glacial supply of detrital material north of 66°S in the South Pacific, which they attributed to increased amounts of suspended load transported by the CDW to the central South Pacific, similar to observations in the South Atlantic, for which Franzese et al. [2006] and Noble et al. [2012] proposed that the ACC was more sediment laden during the LGM. This was likely originating from the stronger winds and larger sediment source areas during the LGM due to expanded deserts (consequence of a reduced hydrological cycle), lower sea level and enhanced exposure of shelf sediments, formation of mobile outwash plains from glaciers, and increased supply of glaciogenic debris by expanded ice sheets [Noble et al., 2012, and references therein], which led to the release of fine-grained weathered material to the Southern Ocean. Therefore, changes in the proportions of source regions of eolian inputs can explain the observed variations. A recent comprehensive study by Lamy et al. [2014], covering an extensive area of the Southern Ocean to the south of our location, supported the predominant eolian origin of lithogenic material accumulated in the sediments of the Pacific sector of the Southern Ocean and demonstrated a threefold increase in deposition of dust in the Pacific sector of the Southern Ocean during glacial periods of the past 1 Ma, consistently with enhanced westerly winds [e.g., Albani et al., 2012]. Although Lamy et al. [2014] inferred the dust to be derived from Australia and New Zealand, they did not provide any data on the provenance of the detrital material. Our data support their suggestions on the origin of the dust, and one possible explanation for the shift toward more positive Nd and Sr isotope signatures during glacial periods observed in this study may have been a stronger dust input from the region of the Lake Eyre Basin, central Australia. This potential source area (see inset in Figure 9) is characterized by a narrowly defined Nd-Sr isotopic field of ~3 and ~0.7095, respectively [Revel-Rolland et al., 2006] and is less dependant on changes in rainfall than other contributing regions of Australia, such as the Murray-Darling River Basins (SE Australia) [Revel-Rolland et al., 2006]. This either reflects drier conditions in continental Australia or enhanced atmospheric transport due to higher wind speeds or a combination of both during glacials [e.g., Hesse, 1994].

5. Conclusions

The results of our study based on two sediment cores from the central South Pacific indicate a reduction of NADW admixture to the Southern Ocean during glacial stages supporting previous results from the southern Atlantic, Indian, and westernmost South Pacific. The deep water circulation proxies used in this study (Nd and Pb isotopes) show small but consistent variations: More radiogenic Nd and Pb isotopic signatures of deep waters prevailed during glacials, which is consistent with a similar reduction in the contribution of the least radiogenic end-member (NADW) to CDW during the LGM and MIS 6. Accordingly, CDW has prevailed in the
midlatitude (~45°S) central South Pacific at 3000/3500 m water depth during glacials. The small amplitude of the observed Nd and Pb isotope variability is consistent with the expected dilution of NADW along the flow path of CDW in the central South Pacific via mixing with Southern Ocean and Pacific waters.

Combined detrital Nd-Sr isotope compositions indicate that the provenance of lithogenic material arriving in the central South Pacific during the past ~240 ka B.P. remained stable in that Australian and New Zealand dust has remained the main source of continent-derived material brought to our study region by the dominant westerlies. However, the glacial signatures were shifted toward more radiogenic isotope compositions suggesting markedly increased contributions from regions with higher proportions of mantle-derived rock, such as the Lake Eyre region (central Australia). Detritus from Antarctica might have also reached the locations of our cores as suspended load of oceanic currents during glacials as a consequence of enhanced erosion and weathering inputs from the larger ice sheets.

Acknowledgments

We would like to thank the "Bundesministerium für Bildung und Forschung, Germany" for funding the collaborative research project SOPATRA (South Paleoceanographic Transects, 03G0213A and 03G0213B) jointly accomplished by GEOMAR and the Alfred Wegener Institute (AWI). We also thank the captain and crew of German RV Sonne and participants of the expedition SQ213, Ingrid Schindlbeck for lab support, and Editors Ellen Thomas and Christopher Charles. Comments by the latter, Taryn Noble, and an anonymous reviewer improved the quality of this paper. All results presented in this study are available at the PANGAEA* database (www.pangaea.de).

References

