Horizontal compressive stress regime on the northern Cascadia margin inferred from borehole breakouts

M. Riedel¹, A. Malinverno², K. Wang³, D. Goldberg², and G. Guerin²

¹ GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Geodynamics, Kiel, Germany, ² Lamont Doherty Earth Observatory of Columbia University, Palisades, New York, USA, ³ Geological Survey of Canada, Sidney, British Columbia, Canada

Abstract
During Integrated Ocean Drilling Program Expedition 311 five boreholes were drilled across the accretionary prism of the northern Cascadia subduction zone. Logging-while-drilling borehole images are utilized to determine breakout orientations to define maximum horizontal compressive stress orientations. Additionally, wireline logging data at two of these sites and from Site 889 of Ocean Drilling Program Leg 146 are used to define breakouts from differences in the aperture of caliper arms. At most sites, the maximum horizontal compressive stress S_{Hmax} is margin-normal, consistent with plate convergence. Deviations from this trend reflect local structural perturbations. Our results do not constrain stress magnitudes. If the margin-normal compressional stress is greater than the vertical stress, the margin-normal S_{Hmax} direction we observe may reflect current locking of a velocity-weakening shallow megathrust and thus potential for trench-breaching, tsunamigenic rupture in a future megathrust earthquake.

1. Introduction
Convergent margins, such as the Cascadia subduction zone, host some of the largest earthquakes, often accompanied by devastating tsunamis such as the Sumatra-Andaman 2004 earthquake [Loy et al., 2005; Rabinovich and Thomson, 2007] and the Tohoku-Oki 2011 earthquake [Kodaira et al., 2012; Tajima et al., 2013]. Understanding the mechanisms of earthquake generation, recurrence pattern, and potential for tsunami generation is important to hazard assessment and risk mitigation. Constraining the state of stress in the accretionary complex of the overriding plate is a key element in developing such understanding. The state of stress within the accretionary prism generally is controlled by the mechanical coupling at the interface between downgoing and overriding plates and by gravity [e.g., Wang and Hu, 2006; Wang and He, 2008]. Although the maximum stress direction in the prism is thought to be associated with compression due to shear traction along the subduction megathrust [Zoback, 1992], deviations from this general pattern are important to detect, as they help to understand stress-fluctuations during earthquake cycles.

The state of intraslab stress at the Cascadia subduction zone has been defined previously from inversion of earthquake focal mechanisms [Wada et al., 2010]. In northern Cascadia the Juan de Fuca slab is primarily under compression normal to the slab surface with tension in the downdip direction as a result of the overall net slab pull. As proposed by Wang et al. [1997], vector combination of the net slab pull and subduction resistance results in a right-lateral shear traction acting on the surface portion of the Juan de Fuca plate along most part of the subduction boundary, but the traction is margin-normal or even left-lateral off Vancouver Island.

We report new observations of the state of stress within the upper ~300 m below seafloor (mbsf) of the accretionary prism at the northern Cascadia margin as defined from borehole breakouts and fracture alignments. Breakouts record the present state of stress, and fracture alignments depend on the stress state at the time of fracture formation. The breakouts are based on logging data from Integrated Ocean Drilling Program (IODP) Expedition 311 in 2005 [Riedel et al., 2006] and Ocean Drilling Program (ODP) Leg 146 in 1992 [Westbrook et al., 1994] and are compared to fault trends identified from seafloor multibeam bathymetry and seismic data. Focal mechanisms of crustal earthquakes [e.g., Wang et al., 1995; Balfour et al., 2011] provide additional constraint on the state of stress in the broader region.
Borehole breakouts have previously been successfully used to define stress orientations in central Cascadia at Southern Hydrate Ridge off Oregon [Goldberg and Janik, 2006], and in other subduction zone settings such as off Costa Rica as part of the IODP CRISP project [Malinverno et al., 2016], at the Nankai trough as part of the IODP NanTroSEIZE project [Lin et al., 2010; Chang et al., 2010] and ODP Leg 196 [McNeill et al., 2004], and at the Japan Trench as part of the IODP J-FAST project [Lin et al., 2013].

2. Geological Background

At the Cascadia subduction zone, the Juan de Fuca plate is subducting beneath the North American plate (Figure 1) at a rate of ~46 mm/yr with a relative motion direction of ~49° [DeMets et al., 2010]. In northern Cascadia the oceanic plate is young (2–6 Ma) and therefore warm and buoyant [Davis et al., 1990]. The 1 to 2 km thick sedimentary section that lies on top of the oceanic plate near the deformation front consists of a mix of fine-grained hemipelagic sediments and coarser-grained turbidites [Westbrook et al., 1994]. At the deformation front, the sediment is mostly scraped off and accreted to the margin [Davis and Hyndman, 1989] resulting in a large accretionary prism hosting a series of ridges and folds. The accretion of sediments leads to overall sediment thickening and bulk shortening as well as fluid expulsion [Hyndman et al., 1993; Hyndman et al., 2001]. The upwardly expelled fluids are rich in methane, and as a consequence, gas hydrate occurs across the prism from the deformation front to the eastward limit of regional gas hydrate occurrence in water depths of ~900 m [e.g., Riedel et al., 2010]. Several boreholes have been drilled off Vancouver Island during ODP Leg 146 and IODP Expedition 311.
which document gas hydrate settings and associated sedimentology [e.g., Westbrook et al., 1994; Kastner et al., 1995; Malinverno et al., 2008; Torres et al., 2008; Riedel et al., 2010]. Most drill sites are along a central seismic line (Figure 2) across the accretionary wedge. Numerous additional studies incorporating seismic data, geological sampling, heat flow measurements, and long-term observations have been conducted to further understand the gas hydrate occurrence, origin of methane, and fluid-flux regime across the prism [e.g., Hyndman and Davis, 1992; Yuan et al., 1999; Riedel et al., 2009]. The geological and geophysical observations from these studies have provided valuable background information for our study of the stress field.

3. Methodology and Data

Following previous analyses of breakout detection [e.g., Goldberg and Janik, 2006; Malinverno et al., 2016], we utilize the logging-while-drilling (LWD) 360°-coverage borehole images of the electrical resistivity at bit (RAB) and bulk density from all five sites drilled during IODP Expedition 311 (U1325-U1329). The vertical resolution of the LWD data is limited by the rate of penetration (~25 m/h on average during X311) during data acquisition and an effective vertical sampling resolution of ~0.25 m was achieved. The LWD image data were first processed to incorporate magnetic declination and then rotated according to the azimuthal reference. Log processing details (and further information on drilling parameters such as rate of penetration) can be found as part of the processing notes provided online at the IODP logging database (e.g., http://brg.ldeo.columbia.edu/data/iodp-usio/exp311/U1328C/documents/index_documents.html) or the X311 Proceedings [Riedel et al., 2006]. The X311 Proceedings describe the overall logging results, but the analysis of breakout orientations that we present here is new.

Borehole breakout results are usually interpreted in terms of three stress components: the vertical stress (S_V), the maximum (most compressive) horizontal stress $S_{H_{max}}$ and the minimum horizontal stress $S_{H_{min}}$. If the state of stress is Andersonian, these will be the three principal stresses. Drilling a borehole into a formation exposed to differential horizontal stresses ($S_{H_{max}} > S_{H_{min}}$) induces a circumferential stress around the borehole wall that reaches a compressive maximum at the azimuth of $S_{H_{min}}$. If the circumferential stress exceeds the rock strength, the borehole wall will spall and develop characteristic breakouts on opposite sides of the borehole as depicted in Figure 3 [Zoback et al., 2003]. In LWD image data, borehole breakouts appear as vertical zones of lower electrical resistivity and bulk density due to the larger fluid-filled gap between the tool sensors and the borehole wall. We interpreted the unwrapped LWD image data for borehole breakouts and fracture alignments following the guidelines provided by the World Stress Map Project [Tingay et al., 2008]. We recorded the depth and azimuth of individual breakouts and combined RAB and density image information for final determination of the azimuth of $S_{H_{min}}$. The average azimuth of $S_{H_{max}}$ with a standard deviation is reported for each borehole. Downhole changes of $S_{H_{max}}$ can also be exploited to detect lithology or structurally driven variations in the stress regime.

Wireline logging measurements indicate the presence of borehole breakouts by the aperture and orientation of the arms of a four-arm caliper tool, such as the Formation MicroScanner (FMS). As these tools are pulled uphole, they normally rotate due to cable torque. When breakouts are present, one opposing pair of...
the caliper arms tends to remain set into the enlargement along a particular azimuth of the hole [Bell and Gough, 1979; Plumb and Hickman, 1985; Lin et al., 2010]. Thus, breakouts can be detected when the difference in the orthogonal borehole radii is significant and consistent in orientation over an interval. Bell and Gough [1979] first discovered breakouts in numerous oil and gas wells in Alberta, Canada using this method. We identify breakouts in the Cascadia data where caliper anomalies show differences greater than 1.2 inches (3.05 cm).

4. Results of Breakout Analyses

4.1. General Observations

Figure 4 shows a summary of the RAB data used for our breakout analyses combined with the main lithological units identified at the five X311 drill sites. The breakouts are continuous through most of the logged intervals at all sites, crossing lithological boundaries and the gas hydrate stability zone, and indicate a rather uniform stress field across the transect. A comparison of breakouts observed in the wireline FMS caliper logs with the LWD borehole image data is shown in Figure 5. The locations and azimuths of the breakouts are very similar between the two data sets. Combining all the breakout information observed in LWD and FMS caliper data, histograms of the azimuthal distributions (rose diagrams) show consistent downhole trends in orientation with relatively small standard deviation at all sites (Figure 6). All breakout-inferred orientations of S_{Hmax} are listed in Table 1. With the exception of Site U1325, all sites indicate NE-SW trending S_{Hmax}. Site U1325 is different in having a S_{Hmax} oriented approximately E-W.

4.2. Site U1326

Site U1326 was drilled close to the deformation front into a ridge that is characterized by a large slope failure and numerous normal faults perpendicular to the main axis of the accretionary ridge [Lopez et al., 2010; Hamilton et al., 2015]. The axis of the accretionary ridge trends nominally NW-SE, but bends progressively from N to S, causing an overall concave southwestward shape of the ridge (Figure 7).

Breakouts at Hole U1326A (Figure 6a) drilled at the northern edge of the ridge suggest a compressive regime that aligns with the orientation of the local ridge axis (Figure 7). The borehole data also show numerous dipping bedding planes throughout the drilled interval. These planes consistently dip at $\sim 45^\circ$ in the direction of $\sim 315^\circ$ (NE), i.e., striking 315°. This strike direction matches the strike of sediment layers imaged by seismic sections across this ridge (Figures 8a and 8b). The sediments, initially deposited on the abyssal plain, were progressively folded and thrust upward to form the ridge. Three lithostratigraphic units were defined at Site U1326, although the entire cored interval is relatively homogenous in the occurrence of dominantly fine-grained sediments (clay to silty clay) with interspersed coarse-grained silty/sandy turbidites [Riedel et al., 2006]. Lithostratigraphic Units I and II were divided based on abundant soft-
sediment deformation and dipping strata as well as occurrences of biogenic components beneath \(\sim 34 \) mbsf. Lithostratigraphic Unit III shows fewer turbidite input and is marked by an onset of diatoms at \(\sim 146 \) mbsf. Unit III is overall composed of 37% diatoms. Hole U1326A intersects the ridge slightly east of the apex of the anticline, generating an apparent north-easterly dip of sediment layers. Normal faults were observed in the core from Hole U1326A (e.g., core interval U1326C-6X-5, 16–35 cm, Figure 8a) which suggests that pervasive structural deformation of these sediments occurred after deposition. Breakouts were observed across all lithological units as well as above and below the gas hydrate stability zone (GHSZ) with no change in orientation. The direction of maximum horizontal compression (\(S_{\text{max}} \)) is \(\sim 30^\circ \) and almost perpendicular to the strike of the frontal ridge segment north of the prominent slope failure (Figure 7).

4.3. Site U1325
Site U1325 is located further along the X311 drilling transect \(\sim 5 \) km landward of the deformation front. The site is within a slope basin where sediments are affected by a buried ridge of accreted sediments that does not crop out on the seafloor (Figure 9a). The resulting uplift of the ridge caused syn-depositional tilting of the slope-basin sediments.
Four lithostratigraphic units were defined at Site U1325. The entire 350 m of recovered core are dominantly fine grained detrital sediment (clay to silty clay) with interspersed coarse-grained turbidites [Riedel et al., 2006]. Units I–III were distinguished by the sudden absence of diatoms in Unit II (from /C24/52 to 102 mbsf). In contrast, Unit III has again a high abundance of biogenic components (up to 50%). Unit IV (198–350 mbsf) is characterized by both low turbidite input and an absence of biogenic components. Most breakouts (/C24/80%) appear below 232 mbsf within lithologic Unit IV (Figure 4), but without any change in orientation relative to the breakouts observed above.

At this site, the orientation of \(S_{\text{Hmax}} \) derived from the borehole breakouts is almost E-W (\(\sim 98^\circ \)), parallel to the strike of nearby accretionary ridges that outcrop slightly north of the drill site. Site U1325 is part of a basin that develops between two major thrust fault systems to the west giving rise to the ridge of Site

Figure 5. Example of the wireline-derived breakout orientations compared to the logging-while-drilling (LWD) borehole image at Site U1328 (Bullseye Vent). The borehole radius (Hole U1328C, drilled approximately 40 m to the SW of Hole U1328A) shown in the two left columns, combined with the formation micro scanner (FMS) data yields breakout orientations that are overlain as circles onto the LWD image (right most column) measured in Hole U1328A. Note, only one quadrant of the wireline derived breakouts is shown for clearer comparison of the LWD and wireline results. The nearly vertical lines of low resistivity patches seen on the LWD image are indicated by the green arrows.
U1326 and the east where Sites U1327, U1328, and 889 are located. Subsidence in response to the thrust faults and continuous sedimentation of turbidites and hemipelagic mud has filled up to 800 m in this well-layered slope basin, which is wedged between secondary buried ridges resulting in progressive tilting of the sediment layers (Figure 9).

4.4. Sites U1327 and 889
Sites U1327 and 889 are located at the midpoint of the drilling transect, ~20 km east of the deformation front. The drill holes are near two prominent topographic highs that rise >200 m above the surrounding
Sediments at Site U1327 were divided into three lithostratigraphic units [Riedel et al., 2006]. The lithostratigraphic boundary between Units I (slope-basin sediments) and II (accreted sediments) at a depth of ~90 mbsf is marked by a sharp decrease in the number and thickness of sand and silt layers and the onset of diatom-rich sediments. The top of lithostratigraphic Unit III is defined at a depth of ~170 mbsf based on the sudden absence of diatoms and a high degree of induration of the sediments. Breakouts were observed from LWD data in Hole U1327A over an interval from 36 to 300 mbsf, crossing all lithologic units and the GHSZ with no significant change in orientation. No wireline FMS data were acquired at Site U1327. Two passes of wireline FMS data each were acquired in Hole 889A (from 80 to 260 mbsf) and Hole 889B (from 100 to 250 mbsf). Breakouts from the wireline data in both holes are observed below a depth of 84 mbsf, within the accreted sediments only.

Data from Site U1327 yield an orientation of $S_{H\text{max}}$ of 20.5$^\circ$ with little variation ($\pm 8^\circ$ standard deviation). Data from Holes 889A and 889B indicate $S_{H\text{max}}$ orientations that vary from ~59$^\circ$ ($\pm 19^\circ$) at Hole 889A to ~8$^\circ$ ($\pm 24^\circ$) at Hole 889B (Figure 6). The $S_{H\text{max}}$ directions inferred from wireline data in the two Site 889 boreholes drilled during ODP Leg 146 have much larger standard deviations than the LWD data.

These three boreholes lie within a region of dense seismic data coverage acquired for ODP Leg 146 and X311 predrilling site surveys. We have mapped the extent of the boundary between slope-basin sediments and the underlying accreted material as an indicator of the main structural features and underlying tectonics (Figure 10). The accreted sediments (acoustically more chaotic to transparent in character, Figure 11) form a prominent ridge east of the drill sites (Figure 10). A prominent thrust fault is located east of the ridge [Westbrook et al., 1994] and numerous smaller normal and strike-slip faults, partially associated with cold vent activity, were identified [Furlong, 2013; Riedel et al., 2010; Pautel et al., 2015] resulting in a complex fault pattern overall around these boreholes.

4.5. Site U1328

Site U1328 (Bullseye Vent), located ~3.5 km south of U1327, intersected laminated slope-basin sediments deposited in a minibasin that developed between two buried ridges of accreted sediments (Figure 12). The sediment layering shows an increasing deflection (tilt) toward the bottom of the basin. Three lithostratigraphic units were defined at Site U1328 [Riedel et al., 2006]. Similar to Site U1325 and U1326, all three units consist of a mix of fine-grained sediments (clay and silty clay) with interspersed layers of coarser grained material (turbidites). The boundary between Units I and II at a depth of ~132 mbsf is marked by the onset of diatom-rich sediments in Unit II. Below ~197 mbsf, Unit III contains fewer turbidites and is
mostly barren of diatoms. The uppermost 40–50 mbsf of this hole is characterized by the presence of massive gas hydrate layers. Gas hydrate was also recovered in low concentrations (<5% of the pore space) below this depth. Breakouts were observed in the LWD image data from a depth of 30–298 mbsf. Two passes of wireline FMS logs in Hole U1328C show consistent breakout orientations from ~100 to 290 mbsf across all lithostratigraphic units and above and below the GHSZ. Using the breakout orientation, the mean S_{max} direction is ~32° (LWD) and ~28° (wireline, Table 1). The orientation of S_{max} at this Site is consistent with the alignment of the buried accretionary ridges (Figure 12) and the shape of the basin (as outlined in Figure 10 from the isobaths of the top of accreted material).

4.6. Site U1329

The easternmost Site U1329 drilled during X311 intersected a regional unconformity at a depth of ~135 mbsf. The base of the GHSZ is located at 125 mbsf, although no gas hydrates were recovered and the BSR is only weakly developed at this site (Figure 13). Approximately ~4.5 Ma of sediments are missing from the sedimentary record at the unconformity [Akiba et al., 2009]. Three lithostratigraphic units were defined at Site U1329 [Riedel et al., 2006]. Lithologic Units I and II are dominated by fine-grained detrital sediments (clay to silty clay) and distinguished by the presence of diatomaceous ooze and high biogenic silica content below ~37 mbsf. Unit III contains few occurrences of coarse-grained material and has a very low sedimentation rate [Akiba et al., 2009]. The lowermost part of Unit III is marked by the occurrence of a breccia, possibly representing a debris flow. Overall, the most striking feature of this site is the strong decrease in porosity and increase in electrical resistivity beneath ~170 mbsf (see Figure 4). Breakouts were observed at this Site in the LWD image-data and wireline FMS data. LWD breakouts occur from 42 to 118 mbsf and wireline breakouts are observed with a consistent orientation from 82 to 162 mbsf. S_{max} directions have a mean value of ~42° from the LWD breakouts and 36.5° from wireline breakouts (Table 1). Below ~170 mbsf, the diameter of Hole U1329D becomes much smaller and a second pass of the wireline FMS could not be acquired.

5. Discussion

5.1. Impact of Sedimentological Variation and Gas Hydrate Occurrence

Breakout directions observed in our borehole images are remarkably consistent over the drilled intervals at each site, and results from LWD and wireline operations match well overall. Despite differences in the
sediment composition at each drill site (e.g., abundance of coarse-grained silt/sand turbidites) breakout orientations appear unaltered by these changes within the statistical spread and resolution of the individual data sets. Overall, the majority of the boreholes intersect slope-basin sediments of <0.5 Ma of age. Only at Sites U1327 and 889 the boreholes intersect the seismically observed boundary between slope- and older accreted sediments. These older sediments, though similar in composition to the slope-basin sediments, are more indurated (Riedel et al., 2006) and exhibit a scaly fabric in cores from Site 889 (Westbrook et al., 1994). The only minor mineralogical change noted was the occurrence of glauconite within the accreted sediments (Westbrook et al., 1994), which is otherwise not present in the sedimentological record cored. No change in borehole breakout orientation or abundance of breakouts is observed at Site U1327 or 889, indicating that the stress orientation at these boreholes is uniform across major lithological and stratigraphic boundaries.

The oldest sediments (3/C24 6.8 Ma) were drilled and cored at Site U1329. Breakouts from the LWD data at Site U1329 are confined to the upper 125 mbsf and do not occur beneath the unconformity seen at ~135 mbsf. The wireline log data, however, did reveal breakouts beneath the unconformity at the same orientation than the breakouts above. This again shows that even at this eastern-most site the stress regime is consistent across the entire depth interval drilled and is unaffected by the presence of the unconformity.

Additionally, breakout orientation within the GHSZ is consistently observed with the same mean value as below the base of GHSZ. The overall concentration of gas hydrate within the pore-space at individual drill sites is rather low and averages ~5% (Riedel et al., 2010). Torres et al. (2008) observe that concentrations may locally exceed 80%, especially in the coarser-grained turbidites. As such individual coarser-grained units are relatively thin, having a maximum thickness of 8–10 cm, we observe no significant impact on the shear strength of the sediment and no change in the borehole image data. For example, breakouts are consistent over the interval from 80 to 100 mbsf at Site U1326 where abundant turbidites and high gas hydrate saturation occur, associated with a marked increase in electrical resistivity and P wave velocity (Riedel et al., 2006). Despite the presence of gas hydrate, which is believed to increase sediment strength (e.g., Waite et al., 2009; Priest et al., 2014), breakouts are also observed across the massive gas hydrate cap from 30 to 50 mbsf at Site U1328. The magnitude of the horizontal stresses acting in this interval must exceed the
strength of these hydrate-bearing sediments. No sediment sample from collected during X311 has been stress tested to date. Using sediment cores available at the IODP core repository and growing synthetic gas hydrate could be an alternative experiment to obtain sediment shear strength measurements; however, artificially formed gas hydrate in remolded sediments may strongly alter the resulting sediment physical properties [Waite et al., 2009; Priest et al., 2014]. We therefore have not undertaken such experiments or extrapolated values from other experiments using sediments from other continental margins.

5.2. \(S_{\text{Hmax}} \) Directions and Prism Deformation

Comparing the direction of measured maximum horizontal stress to the structural setting of the accreted prism generally yields a good correlation with the plate convergence direction of \(\sim 49^\circ \) [from DeMets et al., 2010] and is consistent with the orientation of accreted ridges and underlying thrust faults which are the primary structural expressions of tectonic compression (Figure 14). The seafloor multibeam bathymetry of the region shows that the accreted ridges along the deformation front systematically switch orientation, which may impact local stress orientation. Ridge and thrust fault segments a few kilometers in length consistently appear from west of the deformation front to east of the shelf-edge. Structural lineaments of individual ridge segments are oriented \(\sim 110^\circ \pm 10^\circ \) and \(\sim 150^\circ \pm 10^\circ \) [Riedel et al., 2016], subperpendicular to the direction of relative plate motion (Figure 15). Most obvious at Site U1326 (Figure 7), the fact that our observed \(S_{\text{Hmax}} \) is not in the plate convergence direction may be due to the orientation and rotation of these ridge segments.

Breakout orientation in the central portion of the X311 drilling transect at Sites U1327 and U1328 is consistent with the overall trend of the subducting plate motion, underlying tectonic structures, and distribution of the accreted sediments (Figure 10). Results from wireline logging at Site 889, however, reveal a slightly different orientation of \(S_{\text{Hmax}} \). Figure 10 illustrates the location of numerous normal faults around Site 889 and U1327 which shows the complex interplay of various forces that act on the boreholes. The normal faults are only seen within the seismically well-layered slope-sediment cover and are undetectable in the underlying accreted sediments that lack seismic coherency. Because the wireline logs in Holes 889A and 889B were obtained from depths >100 mbsf, the breakouts identified occur exclusively within the accreted complex. The time lag between drilling and logging does not affect the orientation of the breakouts [Moore et al., 2011], and thus, the operational differences between the LWD and wireline data are not responsible for the different orientations in \(S_{\text{Hmax}} \). Structural analyses of recovered core was completed for Site 889 (not for cores from X311) and the conclusion from analyses of deformation features in the recovered sediments from Holes 889A and 889B at depths where breakouts are observed (>100 mbsf) stated that "pervasive
fracturing is indicative of bulk distributed strain" [Westbrook et al., 1994]. This strain may have developed as sediments were moved up through the hanging wall of the underlying thrust fault (F1 in Figures 10 and 11). Whether rotation of local fault-blocks (as suggested from the shallower normal faults) or accumulated stress within the accreted sediments causes the variation of S_{Hmax} orientation over such short lateral distances between these three boreholes (\sim500 m) is not resolvable from the data available. The direction of S_{Hmax} and large uncertainty in these wireline data is thus reasonably consistent with the results from the other holes across the transect (U1326, U1327, U1328, and U1329).

An exception from the margin-normal trend in S_{Hmax} is clearly observed at Site U1325, where S_{Hmax} (\sim98°) is rotated clockwise from the dominant subduction direction. Site U1325 lies within a slope basin between two major thrust faults and subsidence in response to neighboring thrust faults creates a catchment for downslope turbidite sedimentation. The borehole breakout orientation, S_{hmin}, is nearly N-S and may reflect the extensional nature of this bowl-shaped slope basin. As seen in the seismic image (Figure 9b), this basin is also wedged between smaller-scale ridges where infilling sediments are continuously deforming. The breakout orientation thus reflects a complex and composite stress field that amalgamates various local stress components and does not simply align with the nearby thrust faults in the subduction direction.

Borehole breakout analyses in other convergent margin settings show similar margin-parallel S_{Hmax} directions. In particular, whereas most sites drilled in the Nankai Trough show a margin-perpendicular S_{Hmax} orientation, S_{Hmax} is margin-parallel in a Kumano fore-arc basin site [Chang et al., 2010; Lin et al., 2010]. One out of three sites along the Costa Rica subduction zone indicates margin-parallel S_{Hmax} from breakouts, and here the variability in S_{Hmax} orientation has been attributed to the effects of a network of normal faults that subdivide the sediment cover into a number of independently deforming blocks [Malinverno et al., 2016].

5.3. The Regional Stress Field

In the onshore area of the Cascadia subduction zone, the maximum compressive stress (σ_1) is horizontal and is oriented roughly parallel with the strike of the margin [Mulder, 1995; Wang et al., 1995; Wang and He, 1999; Balfour et al., 2011]. This margin-parallel compression is in sharp contrast with the margin-normal direction of fastest crustal shortening observed with geodetic measurements [e.g., Balfour et al., 2011; Mazzotti et al., 2011]. The geodetic shortening, however, only reflects elastic stress changes due to current interseismic locking of the megathrust and cannot be used to constrain the orientation of absolute principal stresses [Wang, 2000].

The onshore margin-normal compressive stress has a similar magnitude to the vertical stress [Wang et al., 1995]. Wang and He [1999] explain that the relative magnitudes of the margin-normal and vertical stresses in the inner fore-arc are controlled by two competing effects: gravity, which in the presence of margin
topography promotes greater vertical stress, and plate coupling, which promotes greater margin-normal stress. The observed “neutral” state of stress reflects the fact that the weak subduction megathrust barely provides enough lateral compression to prevent the inner fore arc from collapsing under its own weight [Wang and He, 1999]. For the offshore area, however, Wang and He [1999] show that the plate coupling effect dominates. The presence of active fold-and-thrust structures indicates that margin-normal compression comprises the maximum stress in the outer accretionary wedge over geological timescales. Therefore, the direction of maximum compression rotates from margin-normal in the frontal prism to margin-parallel in the inner fore arc. Crustal earthquakes along the southwest coast of Vancouver Island may suggest that margin-normal compression prevails from the deformation front all the way to the coast at the present time [Balfour et al., 2011]. Although the long-term state of stress in the outer wedge is dominated by margin-normal compression as is evidenced by the fold-and-thrust structures, it remains unclear how the stresses fluctuate throughout great megathrust earthquake cycles. Using the Nankai accretionary margin as a primary example, Wang and Hu [2006] proposed that the outer wedge may undergo large subhorizontal compression during a great earthquake because of a velocity-strengthening behavior of the shallow segment of the megathrust. Their dynamic Coulomb wedge model predicts that during the interseismic phase when the seismogenic zone further downdip is locked, the outer wedge becomes increasingly relaxed until it is dominated by the gravity effect, a prediction that appears to gain support from stress observations from the Nankai margin [Lin et al., 2015]. In order to know whether the outer prism is presently in a compressed or relaxed state, we need to compare the relative magnitude of $S_{H_{max}}$ with that of the vertical stress S_V. Our borehole breakout results clearly indicate that $S_{H_{max}}$ is generally margin-normal, but we unfortunately do not know how its magnitude compares with S_V.

Estimating the magnitude of $S_{H_{max}}$ (and $S_{H_{min}}$ for that matter) requires both the observed widths of borehole breakouts (WOBs) and laboratory-derived unconfined compressive strengths (UCSs) of the sediment [e.g.,

![Figure 12. Two perpendicular seismic sections across Site U1328 (Bullseye Vent) showing the structural setting of a bowl-shaped basin of well-laminated slope sediments overlying sediments of the accreted prism of low seismic amplitude. Locations of these lines see Figure 10.](image-url)
Although it may be possible to determine WOBs from our borehole data, we currently do not have independent measurements of UCSs on any sediment sample. Chang et al. (2006) and Huffmann and Saffer (2016) used empirical relationships to link P wave velocity and UCS in their study areas and computed a wide range of possible values for sediment compressive strength. The same approach cannot be readily applied to our study area, because the effects of gas hydrates above and free gas below the gas hydrate stability zone on P wave velocity can be significant and skew the assigned value of UCS. Furthermore, it is not well known how the P wave velocity relates to the actual value of UCS because additional factors such as gas hydrate structure at the pore-scale play a significant role on controlling sediment strength [e.g., Waite et al., 2009; Priest et al., 2014].

Figure 13. Section of MCS line 8908 across Site U1329. A BSR is observed to the SW of the drill site, whereas the seismic image at U1329 is complex due to an overlap of the depth of the base of the GHSZ and the unconformity.

Figure 14. Composite map showing seafloor multibeam bathymetry, IODP Expedition 311 drilling transect (Sites U1325–U1329), and Site 889 from ODP Leg 146 with orientations of maximum compressive stress (same color-code as in Figure 6). The inset shows orientations of maximum compressive stress inferred from crustal earthquakes for the inner fore-arc region along the west coast of Vancouver Island (dark blue rosette symbol) from Balfour et al. (2011) and farther inland (magenta rosette symbol) from Wang et al. (1995). Note also the apparent fragmentation of the deformation front and entire prism indicated by several representative line-segments (black dotted lines; for further details see Riedel et al., 2016).
Cascadia is presently at a rather late stage of its interseismic phase [Wang and Tréhu, 2016]. Knowing the contemporary state of the stress in the outer wedge helps us understand the frictional behavior of the shallowest segment of the megathrust directly beneath. Depending on whether the prism is in a relaxed ($S_{Hmax} < S_V$) or compressed state ($S_{Hmax} > S_V$), we could infer whether the shallow megathrust exhibits a velocity-strengthening or velocity-weakening behavior, respectively [Wang and Hu, 2006]. Because of the young age of the subducting plate and the thick sedimentary cap on top of it, the shallow megathrust in Cascadia is very warm, making many of the velocity-strengthening clay minerals unstable. It thus may exhibit velocity-weakening [Hyndman and Wang, 1993] and stay locked during the interseismic phase, so that the overlying outer prism does not relax. If so, there is a higher likelihood that coseismic rupture could extend near the deformation front and enhance tsunami generation, similar to the trench-breaching rupture during the 2011 Mw = 9.0 Tohoku-oki earthquake [Kodaira et al., 2012]. Our findings of persistently margin-normal orientation of S_{Hmax} are consistent with this notion, although they do not prove it because we do not know whether $S_{Hmax} > S_V$ at the present time.

6. Summary and Conclusions

We have determined the orientation of maximum horizontal stress from borehole breakouts using logging-while-drilling data acquired during IODP Expedition 311 in a transect drilled across the northern Cascadia margin. To complement the structural analyses, we have utilized wireline logging data acquired at two sites in the transect during IODP Expedition 311 and at Site 889 during ODP Leg 146, obtaining breakout orientations in a total of seven drill sites. The breakouts reveal orientations of the maximum horizontal compressive stress (S_{Hmax}) that are consistent with the margin’s subduction setting. With the exception of Site U1325 within a slope-basin (just landward of the first accretionary ridge) all breakouts suggest a relatively uniform NE-SW orientation of S_{Hmax}.

The observed breakout orientations indicate clearly that the maximum horizontal compressive stress is oriented in the margin-normal direction in the outer accretionary wedge. If the magnitude of this compressive stress is greater than that of the vertical stress, it may reflect a velocity-weakening behavior and current locking of the shallow megathrust, which in turn, may suggests that a future megathrust earthquake may extend to near the deformation front and initiate a trench-breaching, tsunamigenic rupture. Our results thus provide strong motivation to determine the magnitude of this margin-normal compressive stress relative to the vertical stress. This requires direct measurements of the sediment compressive strength and other geotechnical properties that are currently unavailable.
The local compressive regime and underlying thrust tectonics of individual fault segments can also influence the breakout orientations. The deformation front itself is segmented, with prominent right-lateral strike-slip faults occurring at the intersection of individual segments. Accretionary ridges strike at two dominant orientations of ~120° (±10°) and ~150° (±10°). The majority of H_{max} orientations follow the trend of fault segments and accretionary ridges striking at ~120°, with one site (889A) following the trend of ridge orientations striking ~150°. H_{max} is oriented nearly parallel to the trend of accretionary ridges in a slope basin site (U1325). From these measurements of stress orientation in the outer accretionary wedge, we conclude that persistent margin-normal compression exists in direction of plate convergence along the deformation front of northern Cascadia subduction zone.

Acknowledgments

Samples and data were provided by the Integrated Ocean Drilling Program (IODP), and its predecessors, funded by the U.S. National Science Foundation and participating countries. Data from IODP Expedition 311 can be found online at the proceedings (http://publications.iodp.org/proceedings/311/311toc.html#Expedition_research_results). Logging data from IODP ODP Sites used in this study can be further accessed through the database of the Lamont Doherty Earth Observatory (http://iodp.ldeo.columbia.edu/DATA/). We thank the captain and crew of the JOIDES Resolution and the technical staff for their support at sea during IODP Expedition 311 and ODP Leg 146. Additional thanks go to the onboard science teams and post cruise scientific community, as well as Trevor Williams and Cristina Brogila (Lamont Doherty Earth Observatory), who postprocessed the LWD and wireline data from Expedition 311 and Leg 146. Maria Jose Jurado and an anonymous reviewer provided insightful comments that improved the paper.

References

Furlong, J. (2013), Characteristic morphologic, backscattered, and sub-seafloor structures of cold vents on the northern Cascadia margin from high-resolution autonomous underwater vehicle data, MSc thesis, 181 pp., Univ. of Victoria, Victoria, B. C., Canada.

