Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island.

Römer, Miriam, Riedel, Michael , Scherwath, Martin, Heesemann, Martin and Spence, George (2016) Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island. Open Access Geochemistry, Geophysics, Geosystems, 17 (9). pp. 3797-3814. DOI 10.1002/2016GC006528.

[img]
Preview
Text
ggge21136.pdf - Published Version

Download (9Mb) | Preview

Supplementary data:

Abstract

Long-term monitoring over one year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of several weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for the fluid system at the seep, fueled by a constant sub-surface methane flux and a frequent tidally controlled discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world's oceans.

Document Type: Article
Additional Information: WOS:000386929500016
Keywords: Methane seepage; Multibeam rotary sonar; temporal variability; time-series analyses; Northern Cascadia Margin
Research affiliation: OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-GDY Marine Geodynamics
Refereed: Yes
Open Access Journal?: No
DOI etc.: 10.1002/2016GC006528
ISSN: 1525-2027
Date Deposited: 26 Sep 2016 10:13
Last Modified: 01 Feb 2019 15:03
URI: http://oceanrep.geomar.de/id/eprint/34019

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...