Helmut Erlenkeuser, Ulrich von Grafenstein und Igor Dmitrenko

1) Leibniz-Labor für Altersbestimmung und Isotopenforschung und Institut für Reine und Angewandte Kernphysik, C14-Labor, Univ. Kiel
2) Lehrstuhl für Allgemeine, Angewandte und Ingenieur-Geologie, Abt. Sedimentforsch. und Meeresgeol., TU München
3) State Research Center of the Russian Federation, Arctic and Antarctic Research Institute, St. Petersburg

EINLEITUNG

Die Laptev See ist eines der großen arktischen Flachwassergebiete auf dem sibirischen Schelf. Sie reicht von ca. 113°E rund 800 km weit nach Osten bis ca. 140°E und erstreckt sich nordwärts von ca. 71°N Breite bis zum nördlichen Schelfrand über fast 7 Breitengrade, d.i. ca. 800 km. Der größte Teil der Schelfsee ist recht flach, mit Tiefen um 20 bis 40 m (Abb.1). Das Relief wird durch einige Rinnen geprägt, die im Glazial und Frühholozän, als der Schelf trocken lag, von den sibirischen Flüssen eingeschnitten wurden.

Diese ausgedehnten flachen Schelfwasserbereiche bestimmen auch den Grad der ozeanographischen Kopplung mit dem offenen arktischen Ozean, und der Salzgehalt als wichtiger ökologischer Faktor wird in der Laptev See von der Wasserführung der sibirischen Ströme bestimmt, die mit großer saisonaler Variation Süßwasser von Süden her eintragen. Vor allem die Ströme Lena mit dem hohen, zunächst nach Osten abfließenden Wasserausstoß und Yana führen in der ozeanographisch entleigten südöstlichen Laptev See zu stark ausgestoßtem Oberflächenwasser mit Salinitäten unter 10 \%e. Der Süßwassereinfluß greift aber auch bis zum Boden durch. In der nördlichen Laptev See, wo die Advektion aus dem freien Ozean wirksam wird, erreicht die Salinität im Benthal fast vollmarine Werte. Die Bildung von See-Eis kann zusätzlichen Einfluß auf Salzgehalt und Schichtung des Wassers nehmen und die Verhältnisse im einzelnen verkomplizieren.

METHODEN

Auf den Transdrift-Expeditionen, die seit 1992 im Rahmen des Verbundvorhabens Laptev See stattgefunden haben, wurden auf zahlreichen Stationen in der Laptev See Oberflächensedimente genommen und daraus die Kalkschaler isoliert, vor allem Bivalvier, benthische Foraminiferen der Gattung *Elphidium* sowie Ostrakoden, die wegen ihrer differenzierten ökologischen Anpassung besonders interessant sind und deren Isotopenzusammensetzung hier näher betrachtet wird.

Die Ostrakoden vom Laptev Schelf sind bis auf wenige Ausnahmen Flachwasserspezialisten, die mit Salinitäten im Bereich von 15 bis 35 \%e zurechtkommen. Viele der Arten finden sich auf dem gesamten Laptev Schelf, einige andere nur im nördlicheren Teil. Die carbonatischen Panzerschalen, die die Ostrakoden nach ihren Häutungsphasen bilden, halten in ihrer Isotopenzusammensetzung die Salinität des umgebenden Wassers fest. Denn das Häufigkeitsverhältnis der Isotope 18O und 16O im Sauerstoff des CaCO$_3$ der Schalen ist über einen Faktor, den sogen. Fraktionierungsfaktor, an das 18O/16O-Verhältnis der H$_2$O-Moleküle des Wassers gekoppelt. Das Isotopenverhältnis wird als relative Abweichung von dem Isotopenverhältnis in einem international vereinbarten Standardmaterial gemessen - meist der sogen. PDB-Kalk, ein kretazischer Belemnitenkalk bei dem Ort Peedee in Süd-Carolina, USA - und in Promille angegeben. Flußwasser hat auf Grund der hydrologischen Prozesse ein niedrigeres 18O als das Meerwasser, im Fall der Lena um ca. 20 \%e, so
daß in der Laptev See die 18O/16O-Zusammen- setzung des Wassers mit etwa 20 % der d^{18}O-Skala pro 35 % der Salinitätsskala, d.h. mit einem Koeffizienten von ca. 0,6 vom Salzgehalt abhängt. Wenn auch der Fraktionie- rungsfaktor zwischen Wasser und biogenem Karbonat noch von der Temperatur beeinflußt wird (Koeffizient: -0,25 %/°K), ist im Benthal der Laptev See doch i.d.R. die Salinität den dominierenden Einfluß auf die isotopenzusam- mensetzung der Karbonatschalen aus.

ERGEBNISSE UND INTERPRETATION

Wegen der starken Salzgehaltschichtung des Wasserkörpers ist die Salinität im Benthal stark von der Wassertiefe abhängig (vgl. Abb. 2; vgl. KARPY et al., 1994). Inwieweit die Moment- werte der Salinität während der Transdrif-
Sind die verschiedenen Taxa auf den tieferen nördlichen Stationen isotopisch relativ einheitlich, zeigen sie auf den flacheren und insbesondere auf den südlichen Stationen doch erhebliche Unterschiede. Das wirft ein interessantes Licht auf die Bedeutung des Lebensrhythmus der Faunen, d.h. hier auf die zeitliche Entwicklung der Schalen vor dem Hintergrund der saisonalen Variation der Salinität. So sollten Ostrakoden ihre Klappen sehr schnell kalzifizieren und einen Moment der saisonalen Salzgehaltsgeschichte festhalten können. Für Bivalven erwarten wir eher einen kontinuierlicheren Schalenaufbau. Umso mehr überrascht daher, daß in der vom Flußwasser stark geprägten südöstlichen Laptev See (Yana Bucht) gerade die Bivalvienschalen die saisonale Phase der niedrigen Salinität soviel ausgeprägter zu zeigen scheinen als die Ostrakoden.

Ist dieses Kalkifizierungsverhalten der verschiedenen Faunen einmal genauer untersucht, eröffnen die Isotopenstudien an den Kalkschalen nicht nur die Möglichkeit, die Salinität in ihrem räumlichen Muster zu rekonstruieren, indem z.B. Ostrakoden aus (datierten) Sedimenten analysiert werden. Vielmehr könnten sich auch saisonale Aspekte der Oceanographie und Flußwasserführung erschließen und für die betrachteten Zeitscheiben der Vergangenheit als Klimasignal ausgewertet werden.

LITERATUR

Helmut Erlenkeuser
Leibnitz-Labor für Altersbestimmung und Isotopenforschung und Institut für Reine und Angewandte Kernphysik, C14-Labor der Universität Max-Eyth-Straße 11
24118 Kiel
Germany