High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea.

Ayache, Mohamed, Dutay, Jean-Claude, Mouchet, Anne, Tisnérat-Laborde, Nadine, Montagna, Paolo, Tanhua, Toste , Siani, Giuseppe and Jean-Baptiste, Philippe (2017) High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea. Open Access Biogeosciences (BG), 14 (5). pp. 1197-1213. DOI 10.5194/bg-14-1197-2017.

[thumbnail of bg-14-1197-2017.pdf]
Preview
Text
bg-14-1197-2017.pdf - Published Version
Available under License Creative Commons: Attribution 3.0.

Download (7MB) | Preview
[thumbnail of bg-14-1197-2017-supplement.pdf]
Preview
Text
bg-14-1197-2017-supplement.pdf - Supplemental Material
Available under License Creative Commons: Attribution 3.0.

Download (201kB) | Preview

Supplementary data:

Abstract

A high-resolution dynamical model (Nucleus for European Modelling of the Ocean, Mediterranean configuration – NEMO-MED12) was used to give the first simulation of the distribution of radiocarbon (14C) across the whole Mediterranean Sea. The simulation provides a descriptive overview of both the natural pre-bomb 14C and the entire anthropogenic radiocarbon transient generated by the atmospheric bomb tests performed in the 1950s and early 1960s. The simulation was run until 2011 to give the post-bomb distribution. The results are compared to available in situ measurements and proxy-based reconstructions. The radiocarbon simulation allows an additional and independent test of the dynamical model, NEMO-MED12, and its performance to produce the thermohaline circulation and deep-water ventilation. The model produces a generally realistic distribution of radiocarbon when compared with available in situ data. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar on the inter-basin natural radiocarbon distribution and characterize the ventilation of intermediate and deep water especially through the propagation of the anthropogenic radiocarbon signal. We explored the impact of the interannual variability on the radiocarbon distribution during the Eastern Mediterranean Transient (EMT) event. It reveals a significant increase in 14C concentration (by more than 60 ‰) in the Aegean deep water and at an intermediate level (value up to 10 ‰) in the western basin. The model shows that the EMT makes a major contribution to the accumulation of radiocarbon in the eastern Mediterranean deep waters.

Document Type: Article
Research affiliation: OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography > Water column biogeochemistry
Refereed: Yes
Open Access Journal?: Yes
Publisher: Copernicus Publications (EGU)
Projects: Future Ocean
Date Deposited: 03 Apr 2017 07:42
Last Modified: 21 Apr 2021 12:05
URI: https://oceanrep.geomar.de/id/eprint/37341

Actions (login required)

View Item View Item