Distribution and lipid composition of early life stages of the cranchid squid *Galiteuthis glacialis* (Chun) in the Weddell Sea, Antarctica

UWE PIATKOWSKI¹ and WILHELM HAGEN²

¹Institut für Meereskunde, Universität Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany
²Institut für Polarökologie, Universität Kiel, Wischhofstr. 1-3, Gebäude 12, D-24148 Kiel, Germany

Abstract: The relatively small numbers of pelagic cephalopods caught in the RMT-8 samples (0–300 m) in February/March 1983 in the Weddell Sea were dominated by early life stages of the cranchid squid *Galiteuthis glacialis*. A total of 48 specimens were caught with dorsal mantle length (ML) ranging from 4–36 mm. They occurred with a mean density of 0.15 ind. x 1000 m³ and were present in 38% of 33 RMT-8 samples. *G. glacialis* was the only cranchid squid found in the Weddell Sea between 66° and 74°S. Its early life stages were concentrated in the layers below the summer thermocline (>50 m) and body sizes appeared to increase towards deeper water layers. For biochemical analyses, nine specimens of *G. glacialis* (ML 6–18 mm) were sampled in the eastern Weddell Sea between 185–520 m water depth in January/February 1985. Total lipid contents ranged from 8%–11% dry weight (DW) with phospholipids being the main lipid component (43–56% of total lipid). Storage lipids (triacylglycerols) made up 18–26% of total lipid. The relatively low lipid contents may reflect the early developmental stage of the specimens examined. The data presented give the first information on geographical and vertical distribution patterns of early life stages of *G. glacialis* in the high-Antarctic Weddell Sea, as well as on their lipid content and composition.

Received 5 July 1993, accepted 18 October 1993

Key words: *Galiteuthis glacialis*, squid, Antarctica, distribution, lipid composition, pelagic system

Introduction

Cranchiids are among the most numerous squids in the world oceans and may reach dorsal mantle lengths of up to 2.5 m (Klumov & Yukhov 1975, Roper et al. 1985). All species are relatively transparent, with few chromatophores and a high degree of morphological diversity (Voss 1980). They are neutrally buoyant, since their acidified coelomic liquid, which forms a large portion of the total body weight, is of low density due to high concentrations of ammonium ions (Denton et al. 1969, Clarke et al. 1979). Cranchiids are preyed upon by a variety of marine top predators (Clarke 1977). In the Southern Ocean they are important prey organisms of birds, seals and whales (Clarke 1980, Cooper et al. 1992, Rodhouse et al. 1992), which together are estimated to consume about 34 million tonnes of cephalopods each year (Clarke 1986). The early life stages concentrate between about 300–1000 m, but may also occur in the top 300 m (Rodhouse & Clarke 1986). During the ANT I Expedition of RV Polarstern in austral summer 1983, specimens of *G. glacialis* were found quite frequently in RMT-8 samples and they were a typical component in the oceanic macrozooplankton community of the Weddell Sea as described by Boysen-Ennen & Piatkowski (1988).

Our knowledge on high-Antarctic macroplankton communities has grown considerably during the last years (Boysen-Ennen & Piatkowski 1988, Lancraft et al. 1989, 1991). However, data on the distribution patterns of early life stages of Antarctic squids still remain scarce due to inadequacy of sampling techniques, avoidance and patchiness (Wormuth & Roper 1983). Apart from the collections during the RRS Discovery cruise 100 in the 15–30°E sector (Rodhouse & Clarke 1985, 1986, Rodhouse 1988), Japanese samples from the Indian Ocean sector (Kubodera 1989) and Russian samples from Prydz Bay (Filippova & Pachomov 1990), no data are available on the distribution of early life stages of squids in the Southern Ocean. There are only two reports on the cephalopod fauna of the...
Weddell Sea (Piatkowski 1987, Piatkowski et al. 1990).

The aim of the present study is to illustrate the distribution of young G. glacialis during an austral summer macrozooplankton survey in the Weddell Sea, and to present the first data on the lipid content and composition of this cranchiid squid. The latter provides new information on the energetics of this high-Antarctic squid.

Material and methods

Macrozooplankton samples were collected in February/March 1983 during the ANT I Expedition of RV Polarstern using an opening/closing rectangular midwater trawl (RMT-1+8) based on the design principle described by Baker et al. (1973). The trawl consists of two net systems, which fish simultaneously with different mesh sizes (RMT-1: 320 μm; RMT-8: 4500 μm) and mouth openings (RMT-1: 1 m²; RMT-8: 8 m²). Our RMT was equipped with three pairs of nets, which were opened and closed sequentially by hydroacoustic transmission. Standard oblique hauls were made in the depth strata 300-200 m, 200-50 m and 50-0 m. Only RMT-8 samples were considered in the present study, and relative abundance (n × 1000 m⁻³) was calculated for the entire 0-300 m layer. Filtered water volumes were calculated considering net speed, net angle and flow data according to Roe et al. (1980). A map of the sampling locations is given in Fig. 1. Specimens of G. glacialis were sorted from the RMT-8 samples directly after capture. Dorsal mantle length (ML) of each specimen was measured to the nearest mm. Samples were then fixed in 4% formalin/seawater solution.

For dry weight (DW) and lipid analyses nine specimens of early G. glacialis were collected from two RMT-1+8 samples during the ANT III/3 Expedition of RV Polarstern in January/February 1985. The animals were collected in the Vestkapp region of the eastern Weddell Sea (Fig. 1). Six specimens were caught on 29 January 1985 in 300-185 m and three specimens on 17 February 1985 in 520-200 m. Immediately after sampling, live G. glacialis were sorted from the RMT-8 catches in a cooling container at 4°C. After measuring their size, the specimens were stored in glass vials under nitrogen at -80°C. In the home laboratory, wet weight (WW) and dry weight (DW) (after freeze-drying for 48 h) were determined. Total lipid content was measured gravimetrically after Folch et al. (1957). The lipid class composition was analysed according to Fraser et al. (1985) by thin-layer chromatography-flame ionization detection with an IATROSCAN (Ackman 1981). Standard mixtures were prepared for calibration that approximated the lipid class composition of the analysed samples. For detailed descriptions of the procedures see Hagen (1988).

Results

Distribution and size structure

Geographical distribution and relative abundance (n × 1000 m⁻³) of G. glacialis in the Weddell Sea are shown in Fig. 1. The squids concentrated in the oceanic regions of the northern and eastern parts of the investigated area, but they were absent in the southern Weddell Sea. The southernmost record was at 74°08.4'S, 24°24.5'W (Fig. 1).

A total of 48 specimens of G. glacialis were collected. Nine specimens (19%) were sampled in the 0-50 m layer, 22 (46%) in the 50-200 m layer and 17 (35%) in the 200-300 m layer. This vertical distribution pattern emphasizes the preference of G. glacialis to remain below the warmer and less saline upper surface layer of the summer Weddell Sea.

Due to the net used, the samples only consisted of early life stages of G. glacialis with ML 4-36 mm (Fig. 2). The vertical size structure of G. glacialis is shown in Fig. 3. The largest specimens were caught in the 50-200 m and 200-300 m layers. Single animals in the upper surface layer (0-50 m) attained
maximum ML of 25 mm. The vertical size distribution patterns indicate the typical developmental descent of cranchiid squids with increasing body size towards deeper water layers.

Lipid data

Two samples of *G. glacialis* were analysed. Six specimens were collected at the end of January 1985 between 185 and 300 m depth and three specimens in mid-February 1985 in 200–520 m depth in the Vestkapp region (Fig. 1). The ML of the first group was 12–18 mm and of the second group 6–11 mm. Their mean dry weight (DW) was 24 mg and 14 mg, respectively; mean wet weight (WW) was 404 mg and 196 mg. Mean total lipid content was 7.5% DW (0.45% WW) at the end of January and 11.1% DW (0.77% WW) in mid-February. The lipid class composition of both samples was quite similar. Due to the rather low lipid contents polar lipids dominated (56% and 43% of total lipid), mainly phosphatidylcholine (33% and 24%) and phosphatidylethanolamine (20% and 17%). Sterols comprised 14% and 11%. Major neutral lipid compounds were triacylglycerols (18% and 26%) and wax esters/sterol esters (8% and 17%). Low amounts of free fatty acids (4%) indicate that the samples did not suffer from artifacts such as autolysis (Table I).

Discussion

Distribution patterns

Despite the small data set, these results present the first information on the distribution patterns of the Antarctic squid *G. glacialis* in the Weddell Sea. The species was mainly concentrated in the open ocean as well as along the steep continental slope of the eastern Weddell Sea. *G. glacialis* did not occur in shallow shelf regions or the southern Weddell Sea, but preferred the oceanic regions, which is typical for all cranchiid squids (Voss 1980, Nesil 1987).

Its vertical distribution pattern indicates a preference to remain below the summer upper surface layer. The top layer (0–50 m) was mostly inhabited by small early life stages of *G. glacialis* (ML 5–9 mm), whereas larger specimens (>30 mm ML) occurred only below the summer thermocline (>50 m). This distribution pattern reflects the developmental descent of *G. glacialis* with increasing body size towards deeper layers, a phenomenon characteristic for cranchiid squids and well documented for *G. glacialis* (McSweeney 1978, Rodhouse & Clarke 1986).

However, large numbers of cephalopod beaks found in the stomachs of emperor penguins and Weddell seals in the southeastern Weddell Sea (Klages 1989, Plötz et al. 1991) suggest reasonable concentrations of other squids in coastal waters of the Antarctic continent. *G. glacialis* is not a common prey organism of Weddell Sea top predators (Klages 1989, Plötz et al. 1991), although its early life stages have regularly been found in macrozooplankton and micronekton samples from the Weddell Sea (Boysen-Ennen & Piatkowski 1988, Piatkowski et al. 1990). This species is probably less attractive to seals and penguins due to its jelly-like appearance which may indicate a prey of low energy content. The more fleshy Antarctic squids *Alluroteuthis antarcticus* and *Psychroteuthis glacialis* are the principal cephalopod diet of top Weddell Sea predators (Klages 1989, Plötz et al. 1991), but, no data on their energy content are available. Another explanation why *G. glacialis* is missing in predator stomachs could be that the (possibly more attractive) adults of *G. glacialis* inhabit the deeper mesopelagic and bathypelagic layers (>700 m) of the open ocean and the continental slope (Rodhouse & Clarke 1986). These regions may be too remote from the common feeding grounds of emperor penguins and Weddell seals.

Our data support the latter assumption, as most of the

<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>Haul depth (m)</th>
<th>Number of specimens</th>
<th>Length ML (mm)</th>
<th>Mean WW (mg)</th>
<th>Mean DW (mg)</th>
<th>Mean lipid %WW</th>
<th>Mean lipid %DW</th>
<th>Total lipid %WW</th>
<th>Total lipid %DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>29/01/85</td>
<td>300–185</td>
<td>6</td>
<td>12–18</td>
<td>404.4</td>
<td>24.4</td>
<td>1.8</td>
<td>0.45</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>17/02/85</td>
<td>520–200</td>
<td>3</td>
<td>6–11</td>
<td>195.8</td>
<td>13.6</td>
<td>1.5</td>
<td>0.77</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>PC</td>
<td>33.0</td>
<td>19.5</td>
<td>3.0</td>
<td>18.3</td>
<td>7.7</td>
<td>14.3</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>23.5</td>
<td>16.6</td>
<td>2.4</td>
<td>26.0</td>
<td>16.9</td>
<td>10.7</td>
<td>3.6</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. *Galiteuthis glacialis.* Vertical size distribution.
specimens were caught in surface waters of the more oceanic part of the Weddell Sea or above the steep continental slope (see Fig. 1). It should be noted, however, that digested parts and a gladius of a larger *G. glacialis* specimen (gladius length 150 mm) have been found in the stomach of the demersal icefish *Chionobathyscus devitti*. This fish was caught in a bottom trawl at c. 2000 m on the eastern slope of the Weddell Sea (Kock & Piatkowski unpublished data). This finding, and the increasing body size of *G. glacialis* towards greater depths, demonstrate that larger *G. glacialis* are a potential prey item for predators co-occurring in deeper water layers.

Lipid data

In 1982 Croxall & Prince noted the lack of data on the chemical composition and calorific content of Antarctic squid, although this group forms a principal part of the diet of marine mammals and birds in the Southern Ocean, particularly in the South Georgian area. They suggested that this information should be “rapidly obtained” for a better understanding of the energy flux through the Antarctic food web. However, more than a decade later comparable data on the biochemical composition of Antarctic cephalopods are still lacking for adults as well as for early developmental stages. This is not surprising, since young cephalopods have not been an abundant group in plankton samples during recent Antarctic expeditions and larger specimens, with their high swimming speed, successfully manage to avoid the currently used nets and trawls. Furthermore, chemical and calorific analyses of marine Antarctic invertebrates are generally rather sparse (Clarke 1984, Hagen 1988, Clarke et al. 1992).

Low lipid contents (0.5–0.8% WW; 8–11% DW), large phospholipid and sterol fractions and small amounts of reserve lipids, mainly triacylglycerols, seem to reflect the early developmental stage of the investigated specimens of *G. glacialis*. These compositions are likely to differ considerably from those of adult specimens which can be expected to accumulate larger energy reserves than the rapidly developing early stages, where most of the energy is channelled towards protein growth. For instance, total lipid contents of adult Northern shortfin squid *Illex illecebrosus* from the Northwest Atlantic (Nova Scotia) were much higher at 5.6% WW. The mantle contained only high lipid content of 11.6% WW (Nash et al. 1978). The authors also identified triacylglycerols as the major deposited lipid. Extremely high lipid contents (20.5–60.5% WW) were measured for the digestive gland of the gonatid squid *Berryteuthis magister* from the Northwest Pacific Ocean and this needs further investigation (Hayashi & Yamamoto 1987). Low lipid contents are typical for ommastrephid squids, which must actively swim to avoid sinking (Clarke et al. 1979). They ranged between 0.4–1.5% WW in the mantle tissues of four ommastrephid squids, *Illex illecebrosus*, *Nototodarus sloani*, *slowi*, *Todarodes pacificus* and *Ommastrephes bartramii* (Hayashi & Takagi 1979). Lipid contents were slightly higher in the mantles of the California market squid *Loligo opalescens* and the ommastrephid Argentine shortfin squid *Illex argentinus* with 2.7% and 2.0% WW, respectively (Suyama & Kobayashi 1980). Maximum lipid contents in squid mantle have recently been reported for the subantarctic onychoteuthid squid *Moroteuthis ingens* with 3.1% WW (Cherel & Ridoux 1992). Croxall & Prince (1982) compiled data on the chemical composition and calorific content of 16 cephalopod species, of which 10 were squids. Although none of the squids were from Antarctic waters, the authors noted the lower calorific content of this group as compared to krill and fish, and explained this by their low lipid contents (mean of 0.9% WW).

Many oceanic cephalopods and all cranchiid squids regulate their buoyancy by means of a voluminous coelomic fluid with high concentrations of ammonium ions (Denton et al. 1969, Clarke et al. 1979). *G. glacialis* does not seem to depend on lipids as buoyancy aids, which is confirmed by its relatively low lipid content. In contrast, the gonate squid *Gonatus fabricii* maintain their buoyancy by accumulating larger lipid deposits, especially in the digestive gland (Clarke et al. 1979).

In summary, as Croxall & Prince (1982) emphasized more than ten years ago, we urgently need more data on the fine-scale distribution and chemical composition of Southern Ocean squids, together with detailed information on sexual maturity and feeding conditions, supported by sound taxonomy. This knowledge will contribute to a better understanding of the biology of Antarctic squid and their role in the pelagic system of the Southern Ocean.

Acknowledgements

We would like to thank our colleagues during the expeditions, and the officers and crew of RV Polarstern for their skillful support during station work. We also thank Werner Dzomila and Christopher Zimmermann, Institut für Polarökologie, for their help in preparing the graphs and the reviewers Prof. A. Clarke and Prof. N. Voss for their helpful criticisms.

Financial support for presenting this research at the Southern Ocean Cephalopods Symposium in Cambridge was obtained from the British-German Academic Research Collaboration Programme (ARC) of the British Council and the Deutsches Akademisches Austauschdienst (DAAD, Grant No. AT313-ARC-VI-92/65).

References

DISTRIBUTION AND LIPID COMPOSITION OF GALITEUTHIS GLACIALIS

FIUPOVA, I.A. & PACHOMOV, E.A. 1990. [Larvae and juvenile squids in the plankton community of the Prydz Bay region.] In V. All-Union Conference on Commercial Invertebrates (Minsk/Naroch, 9-13 October 1990). Abstracts of Communications, Moscow, p. 96-97. [In Russian.]

PLATKOWSK, U. 1987. [Zoogeographical investigations and community analyses on Antarctic macroplankton.] *Berichte zur Polarforschung*, 34, 1-150. [In German.]

