High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of *Emiliania huxleyi*

Peng Jin, Jiancheng Ding, Tao Xing, Ulf Riebesell, Kunshan Gao*

*Corresponding author: ksgao@xmu.edu.cn

Marine Ecology Progress Series 568: 47–58 (2017)

Fig. S1: Daily doses photosynthetic active radiation (PAR), ultraviolet-A (UVA) and ultraviolet-B (UVB) (MJ m⁻²) of *Emiliania huxleyi* CCMP 2090 (non-calcifying) (a) and *Emiliania huxleyi* PML B92/11 (calcifying) (b) during outside incubations. The values presented the means doses from sunrise (~5:30 a.m.) to sunset (~6:30 p.m.) during the daytime. Outdoor incubation periods were from 17 April 2012 to 11 May 2012, and from 21 May 2012 to 7 June 2012 for the non-calcifying strain (CCMP 2090) and the calcifying strain (PMLB92/11).
Fig. S2: An example of the incident solar radiation of photosynthetic active radiation (PAR), ultraviolet-A (UVA) and ultraviolet-B (UVB) (W m$^{-2}$) during outdoor incubations on 23rd April. Daily doses of PAR, UVA and UVB are 5.27, 0.87 and 0.027 MJ m$^{-2}$, respectively.