Deep Intraseasonal Variability in the Central Equatorial Atlantic

Franz Philip Tuchen [1], Peter Brandt [1,2], Martin Claus [1,2], Rebecca Hummels [1]

[1] GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany

PREFACE Final Assembly
17.-19.04.2018, Lanzarote, Spain
Equatorial Atlantic Variability

mean wind-driven circulation

tropical instability waves

deep intra-seasonal variability

interannual surface variability

equatorial deep jets

climate predictability

by courtesy of Martin Claus
Meridional velocity observations

[Graph showing meridional velocity observations with depth and time.]

- Upward phase propagation
- Downward energy propagation

<table>
<thead>
<tr>
<th>Energy source(s)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation mechanism?</td>
</tr>
</tbody>
</table>

Deep Equatorial Intraseasonal Variability | PREFACE '18 | Franz Philip Tuchen
Data distribution – Kinetic energy

- Almost 15 years of velocity data from an equatorial mooring at 23°W
- Gaps in the data coverage introduce uncertainty
- High kinetic energy close to the surface \rightarrow downward propagation
Seasonal cycle of TIWs

- Consistent annual maximum in boreal summer (August)
- Remarkable year-to-year variations of the annual intensification
- Weaker maximum in boreal winter (January)
DEIV in the central Atlantic Ocean

Frequency [cycles per year]

Depth ranges:
- 20-50m
- 50-800m

Depth levels:
- 0m
- 1000m
- 2000m
- 3000m

[m²s⁻²]

- >10⁰
- 10⁻¹
- 10⁻²
- 10⁻³
- <10⁻⁴

Deep Equatorial Intraseasonal Variability | PREFACE '18 | Franz Philip Tuchen
DEIV in the central Atlantic Ocean

Deep Equatorial Intraseasonal Variability | PREFACE ’18 | Franz Philip Tuchen
DEIV in the central Atlantic Ocean

Frequency [cycles per year]
DEIV in the central Atlantic Ocean

[Graph showing frequency vs. depth for different depth ranges: 20-50m, 20-3530m, 50-800m, 1000-2000m, 2000-3530m]
Equatorial waves

Yanai waves
Rossby waves
Kelvin waves
Guiavarc’h et al. (2008)

Frequency ω (s$^{-1}$)
Wavenumber k (m$^{-1}$)

1^{st} mode
2^{nd} mode
3^{rd} mode
Modal decomposition of \(u \) and \(v \)

\(\text{Baroclinic Mode} \)

\(\text{Baroclinic Mode} \)

\(\text{Frequency [cycles per year]} \)

\(\text{Variance \left[m^2 s^{-2} \right]} \)

\(\text{Zonal} \) \(\text{Meridional} \)

a) only Kelvin waves

b) only Yanai waves

c) Gravity waves

Rossby waves

Deep Equatorial Intraseasonal Variability | PREFACE '18 | Franz Philip Tuchen
Yanai beams – energy pathways

Deep Equatorial Intraseasonal Variability | PREFACE '18 | Franz Philip Tuchen
Conclusions

- At the equator: intraseasonal variability is observed down to 2000 m

- A modal decomposition shows that mainly Yanai waves are responsible for the observed variability

- Intraseasonal wave energy is propagated east- and downward along Yanai beams