Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa.

Borkovich, Katherine A., Sardar, Puspendu and Kempken, Frank (2018) Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa. Open Access PLoS ONE, 13 (2). DOI 10.1371/journal.pone.0192293.

Full text not available from this repository.

Supplementary data:

Abstract

Plants, bacteria and some fungi are known to produce indole-3-acetic acid (IAA) by employing various pathways. Among these pathways, the indole-3-pyruvic acid (IPA) pathway is the best studied in green plants and plant-associated beneficial microbes. While IAA production circuitry in plants has been studied for decades, little is known regarding the IAA biosynthesis pathway in fungal species. Here, we present the first data for IAA-producing genes and the associated biosynthesis pathway in a non-pathogenic fungus, Neurospora crassa. For this purpose, we used a computational approach to determine the genes and outlined the IAA production circuitry in N. crassa. We then validated these data with experimental evidence. Here, we describe the homologous genes that are present in the IPA pathway of IAA production in N. crassa. High-performance liquid chromatography and thin-layer chromatography unambiguously identified IAA, indole-3-lactic acid (ILA) and tryptophol (TOL) from cultures supplemented with tryptophan. Deletion of the gene (cfp) that encodes the enzyme indole-3-pyruvate decarboxylase, which converts IPA to indole-3-acetaldehyde (IAAld), results in an accumulation of higher levels of ILA in the N. crassa culture medium. A double knock-out strain (Δcbs-3;Δahd-2) for the enzyme IAAld dehydrogenase, which converts IAAld to IAA, shows a many fold decrease in IAA production compared with the wild type strain. The Δcbs-3;Δahd-2 strain also displays slower conidiation and produces many fewer conidiospores than the wild type strain.

Document Type: Article
Research affiliation: Kiel University > Kiel Marine Science
OceanRep > The Future Ocean - Cluster of Excellence
Kiel University
Refereed: Yes
Open Access Journal?: Yes
DOI etc.: 10.1371/journal.pone.0192293
ISSN: 1932-6203
Projects: Future Ocean
Date Deposited: 01 Aug 2018 09:56
Last Modified: 26 Mar 2019 12:29
URI: http://oceanrep.geomar.de/id/eprint/43894

Actions (login required)

View Item View Item