Frictional properties of subduction input sediments at an erosive convergent continental margin and related controls on décollement slip modes - the Costa Rica Seismogenesis Project (CRISP)

Robert Marek Kurzawski1,2, André Rik Niemeijer3, Michael Stipp4, Delphine Charpentier5, Jan Hinrich Behrmann1 and Christopher James Spiers3.

R. M. Kurzawski, rkurzawski@geomar.de

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany.

2Institute of Geosciences, University of Kiel (CAU), Otto-Hahn-Platz 1, 24118 Kiel, Germany.

3HPT-Laboratory, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1029/2017JB015398

©2018 American Geophysical Union. All Rights Reserved.
Abstract. The spectrum of slip modes occurring along shallow portions of the plate boundary décollement in subduction zones includes aseismic slip, slow slip, and seismogenic slip. The factors that control slip modes directly influence the hazard potential of subduction zones for generating large magnitude earthquakes and tsunamis. We conducted an experimental study of the frictional behaviour of subduction input sediments, recovered from two IODP expeditions to the erosive subduction margin offshore Costa Rica (Exp. 334, 344), employing rotary shear under hydrothermal conditions. The velocity dependence of friction was explored, using simulated gouges prepared from all major lithologies, covering a wide range of conditions representative for the initial stages of subduction. Temperature, effective normal stress, and pore fluid pressure were varied systematically up to 140 °C, 110 MPa and 120 MPa respectively. Sliding velocities up to 100 µm/s, relevant for earthquake rupture nucleation and slow slip, were investigated. The only sediment type that produced frictional instabilities (i.e. laboratory earthquakes) was the calcareous ooze carried by the incoming Cocos Plate, which by virtue

4Institute of Geology, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria

5Université de Franche-Comté, 16 Route de Gray, 25030 Besancon Cedex, France

©2018 American Geophysical Union. All Rights Reserved.
of its slip weakening behaviour is also a likely candidate for triggering slow slip events. We evaluate this mechanism of producing unstable slip and consider alternatives. Therefore, locking and unlocking of plate boundary megathrusts are not only related to variations in pore fluid pressure, but may also depend on the presence of pelagic carbonate-rich lithologies. Subduction systems containing such input are likely low-latitude, where extensive deposition of carbonates takes place above the CCD.

Keypoints:

- Frictional controls on shallow subduction channel deformation
- Shallow seismogenesis and generation of slow earthquakes in an erosive system
- Costa Rica Seismogenesis Project (CRISP), IODP expeditions 334 and 344
1. Introduction

Deformation processes related to the plate boundary interface in subduction zones, also
termed the décollement or megathrust, comprise a wide spectrum of tectonic fault slip
modes including slow slip events and regular megathrust earthquakes, which are the most
destructive natural disasters on planet earth. Related ruptures are several hundreds of
kilometers long, potentially tearing apart entire segments of major subduction zones and
causing devastating tsunamis. In fault mechanics, the rupture area provides a first or-
der estimate of the energy release of a related earthquake, and therefore its magnitude.
Knowledge of the extent of the seismogenic zone of subduction megathrust faults is there-
fore fundamental for hazard assessment, as it constrains (1) the size of the maximum
rupture area, and (2) the potential for exceptionally shallow seismogenesis causing a high
risk for tsunami earthquakes.

The nucleation of large plate-boundary earthquakes is limited to depths between \(\approx 10\) and 40 km at most active continental margins [Byrne et al., 1988; Shimamoto et al., 1993; Hyndman and Wang, 1993]. Parameters and processes controlling especially the updip
limit of this so-called seismogenic zone are not satisfactorily characterized to date, and
remain a matter of debate. The classical model assigns a major role to the dehydration
of clay minerals, and especially the thermally controlled transition from smectite to illite
clays, which in most cases happens to coincide with the onset of seismicity within the
temperature range between 120 – 150°C [Pytte and Reynolds, 1989; Hyndman et al.,
1997; Oleskevich et al., 1999; Saffer and Marone, 2003].
Increasing pore fluid pressure causes the overall stress state to converge to its critical point of failure where hydrofracturing is triggered by reduction of effective normal stress \cite{Terzaghi1923, Clayton1995}, an important expansion of the Mohr-Coulomb theory \cite{Coulomb1776, Mohr1900}. If trapped within, or hindered from escaping by overlying low permeability materials, original pore water is pressurized by sediment compaction and diagenesis within the first $\approx 3-7$ km of burial \cite{Saffer2011, Bekins1992, Bray1985}. Pore space reduction and additional fluid supply from mineral dehydration reactions are thought to generate the required overpressure favoring rupture nucleation.

Hydrous smectite clays are frictionally weak with friction coefficients in the range of $\mu \approx 0.1-0.3$ \cite[e.g.][]{Morrow1992, Lupini1981, Logan1987, Saffer2001, Saffer2012}, whereas anhydrous illite clays are frictionally stronger with $\mu \approx 0.35-0.49$ \cite[e.g.][]{Morrow1982, Morrow1992, Morrow2000, Mitchell2005}. The transition from smectite to illite therefore not only adds volatiles to the system, but also leads to bulk strengthening of subduction channel sediments, thereby increasing the potential for elastic stress buildup and ultimate release in a seismic event. The nucleation of seismic ruptures, however, is not governed by the absolute frictional strength, but rather by the frictional stability of the host material. In particular, it requires velocity-weakening and frictionally unstable behavior \cite{Marone1998a, Scholz1998}. In contrast to the widely expected potentially unstable velocity-weakening behavior, illite shale consistently shows only velocity-strengthening behavior in friction experiments \cite{Saffer2003}. It is therefore unlikely that the transition from smectite to illite is the dominant mechanism controlling the onset of shallow seismogenesis.
Recently, carbonates gained increasing attention in natural and experimental deformation studies on earthquake nucleation. Numerous field-based [e.g. Tesei et al., 2013; Carpenter et al., 2014] and experimental studies [e.g. Ikari et al., 2013a; Verberne et al., 2013, 2014a, b; Tesei et al., 2014; Spagnuolo et al., 2015; Chen et al., 2015; Kurzawski et al., 2016; Vannucchi et al., 2017] report on microstructural and mechanical properties of carbonates which may influence seismogenesis significantly in various tectonic settings, and especially at or close to the updip limit of the seismogenic zone within subduction channels.

Here, we present results of rotary shear friction experiments conducted on simulated fault gouges prepared from various natural subduction input sediments with variable clay and carbonate content. The sediments were recovered offshore Costa Rica in the course of the expeditions 334 and 344 of the Integrated Ocean Drilling Program (IODP). This so-called Costa Rica Seismogenesis Project (CRISP) is the first drilling program aimed at investigating the genesis of large earthquakes and related tsunamis at an erosive active continental margin. Due to the erosive character of the subduction zone beneath Costa Rica, all materials from both, the incoming oceanic plate as well as the overriding continental plate may be transported into the subduction channel. The frictional properties of these sediments will control deformation and seismogenesis within the subduction channel and along the plate boundary.

The aim of this study is a comprehensive characterisation of the mechanical properties of all major lithologies might be important for deformation at the updip limit of seismogenesis at an erosive continental margin and are accessible by scientific drilling. The mechanical behavior is expected to change with increasing temperature and pressure.
conditions during progressive subduction. We therefore picked 9 representative samples from four different CRISP drill sites covering all major lithologies, and experimentally deformed them over a wide range of conditions characteristic of the shallow portions (≈ 0-12 km) of subduction megathrust faults at erosive margins.

2. Study area

At the Middle America Trench (MAT) in the eastern Pacific Ocean oceanic lithosphere of the Cocos Plate is underthrusting the continental Carribean Plate towards the Northeast at a convergence rate of 70 to 90 mm/a [Protti et al., 1994, 1995; DeMets, 2001, Figure 1]. Cocos plate lithosphere was formed at two different spreading centers, the fast spreading East Pacific Rise (EPR) and the slow spreading Cocos-Nazca spreading center (CNS), and therefore features significant lateral changes in heat flow and relief, causing a distinct shift in seismicity to shallower levels where CNS crust is subducted [von Huene et al., 2000; Ranero and von Huene, 2000; Barckhausen et al., 2001; Vannucchi et al., 2001, 2003]. Off Costa Rica and Panama, the Cocos Ridge is subducted as part of the incoming plate [Walther, 2003], significantly influencing the subduction system as explained in the following.

The area is one of the best studied convergent plate boundaries on the planet and is a case example of an erosive active continental margin. It was recently found that the Costa Rica forearc is a depositional forearc, which is a special case for erosive subduction margins [Vannucchi et al., 2016]. Here, extreme subduction erosion causes rapid upper plate subsidence and a coeval formation of a forearc basin, that is simultaneously filled by continental slope sediments [Vannucchi et al., 2016]. This self-sustained mode of fore-
arc development implies that even at high sedimentation rates the slope sediments are deposited before reaching the trench.

Subduction erosion occurs along the entire MAT [Ranero and von Huene, 2000; Ranero et al., 2000; Clift and Vannucchi, 2004] and is intensified due to the collision of the Cocos Ridge offshore Osa Peninsula since its onset in the Gelasian (≈ 2.2 Ma) [Vannucchi et al., 2013, 2016]. The Cocos Ridge, an aseismic magmatic ridge related to Galapagos hotspot magmatism, forms an up to 2.5 km high subaqueous mountain chain with respect to the surrounding ocean floor [Walther, 2003]. It represents a rigid indenter [LaFemina et al., 2009] that impinges the forearc wedge of the overriding plate in an approximately perpendicular orientation and parallel to the convergence direction (Figure 1). Cocos Ridge subduction induces a steepening of the geothermal gradient [Ranero et al., 2008] and results in a shift in seismicity towards a much shallower level as specified in the following paragraph.

The well known seismic record along the MAT includes historic earthquakes of magnitude $M_w > 7$ and tsunamigenic earthquakes. It was used to characterise the geometry of the plate boundary interface and the extent of the seismogenic zone, and to link seismicity patterns to the relief of the downgoing plate in numerous studies [Protti et al., 1995; Newman et al., 2002; Husen et al., 2002; Bilek et al., 2003; DeShon et al., 2003; Arroyo et al., 2014]. DeShon et al. [2003] determined a slab dip of 19° from an aftershock sequence, that followed the 1999 M_w 6.4 Quepos event and delineated the megathrust. The same dataset yielded updip and downdip seismicity limits at depths of ≈ 10 and 30 km. However, this applies to one seismic megathrust event, and especially heterogeneous architecture of the downgoing Cocos plate may constrain significant differences in plate
bending radii and, thus, local slab geometry [Arroyo et al., 2011, 2014; Dinc et al., 2010; Lücke and Arroyo, 2015].

Slow slip processes occur on both the deep and the shallow portions of the subduction megathrust showing maximum magnitudes equivalent to $M_w \approx 7$, and commonly these events last a few to several weeks [e.g. Jiang et al., 2012; Dixon et al., 2014; Saffer and Wallace, 2015]. In Costa Rica, the depth ranges of large earthquake ruptures and slow slip events are actually overlapping in space [Jiang et al., 2012; Saffer and Wallace, 2015], allowing for an investigation of the mechanical preconditions, which may favor one, or the other mode of failure.

The CRISP study area is located on the NW flank of the Cocos Ridge (Figure 1). It comprises seven drilling sites in five different tectonic positions. Two sites on the incoming plate (U1381, U1414) cover the entire incoming sediment succession consisting of pelagic and hemipelagic sediments and the underlying Cocos Ridge basalt. Drilling at Site U1412 revealed the accretionary character of the frontal prism, as a repeating sequence of strata comparable to those from the incoming plate was encountered implying thrust faulting [Harris et al., 2013b; Vannucchi et al., 2016, 2017]. Two sites on the midslope (U1378, U1380) characterize fine grained clastic slope sediments, and the remaining two upper slope sites (U1379, U1413) comprise more proximal medium to fine grained clastic sediments including abundant sand layers. Five sites (U1381, U1412, U1378, U1380 and U1379) are situated along the seismic line BGR99-7, and the remaining two (U1414 and U1413) within a 3D-seismic survey area [Bangs et al., 2015, 2016].
3. Methods

3.1. Experimental apparatus

Friction experiments were conducted in the unique hydrothermal rotary shear apparatus, designed and constructed at the HPT laboratory in Utrecht, The Netherlands [Niemeijer et al., 2008, Figure 2]. The machine is routinely employed to study various aspects of fault mechanics, including frictional behavior and related microstructure evolution in natural and synthetic fault rocks and -gouges. Due to its extraordinarily broad range of operating conditions, namely temperatures up to $T = 700^\circ C$, effective normal stress up to $\sigma_{\text{eff}}^n = 300$ MPa, pore fluid pressures up to $P_f = 300$ MPa and ultra-high shear strains up to $\gamma \approx 100$, it is especially suitable to address progressing deformation inside subduction channels. The sample, usually a simulated fault gouge, is placed between two René 41 Superalloy pistons and laterally confined by two superalloy rings coated with MoS$_2$ lubricant spray (Molycote) to avoid wall friction (Figure 2b,c).

The sample-piston assembly is immersed in distilled water acting as pore fluid inside a pressure vessel, which is then mounted into an Instron 1362 loading frame that externally applies normal stress via a pressure-compensated loading piston. Shear stress is generated on the sample by rotating the pressure vessel together with the internally fixed lower piston via a servo-controlled motor, while the upper piston is held stationary. For detailed descriptions the reader is referred to Niemeijer et al. [2008] and Den Hartog et al. [2012a, b].

3.2. Friction experiments

3.2.1. Sample preparation
In order to prepare simulated fault gouges, IODP core samples were dried at $T = 55^\circ C$ for 24 hours to avoid illitization of smectite clays. Careful disaggregation of the dried material was carried out using mortar and pestle and the grain size fraction $< 125 \mu m$ was extracted from the disaggregated powder by sieving. The extracted material ($\approx 0.54 g$) was evenly distributed between the confining rings and the two opposing internal pistons resulting in an initial gouge layer thickness of approximately 2 mm (Figure 2 c).

3.2.2. Choice of experimental conditions

Experimental conditions were defined to cover a wide range of conditions representative for shallow prograde subduction input trajectories, from the initial stages of subduction close to the ocean floor down to hypocentral depths, notably corresponding to the expected conditions of the updip limit of seismogenesis at approximately 5-6 km depth [Arroyo et al., 2014]. The exact ambient conditions during progressing subduction depend on many factors, such as the local geothermal gradient and the evolution of pore fluid pressure. In subduction zones, the local thermal gradient is controlled by the age of the incoming oceanic lithosphere, its actual composition, and the thickness of the sedimentary cover sequence, but also by frictional heating and fluid flow within the incoming plate [Kameda et al., 2015]. The pore fluid pressure and its evolution in time and space are difficult to predict. Porosity and permeability of input sediments undergo significant changes during progressive subduction related to compaction and diagenesis. A general assumption for the shallow portions of subduction channels is that the pore fluid pressure ranges between hydrostatic and lithostatic values, owing to the fact that the sediments are water saturated while entering the trench. However, the occurrence of pore pressure transients and patches of trapped and overpressured fluids due to decreasing permeability are common [Neuzil,
variations in the geothermal gradient imply significant changes in the stress field specific thermal domains are exposed to, as they are shifted towards greater or lower burial depths. Hence, the ambient conditions for the input materials during progressive subduction are quite variable and can differ substantially even within one single subduction zone. Facing such a large conditional variability, experimental conditions were chosen such that they closely match the expected PT-conditions of the Costa Rica subduction channel whereas pore pressure and, of course, also slip rate were varied in the expected limits (Tables 1, 2 in supplementary material).

3.2.3. Testing procedure

A consistent testing procedure was used for all experiments as illustrated in Figure ?? for experiment 42X47060. During testing phase one, the desired experimental conditions were established and the system was left to equilibrate for at least 45 minutes in the case of heated experiments. Temperature (T) and pore fluid pressure (P_f) were kept constant during each experiment, and were varied systematically to establish a set of 2 - 7 differing experiments for each sample (Tables 1, 2 in supplementary material). The temperature range explored encompasses experiments at room temperature, $T = 70^{\circ}C$ and $T = 140^{\circ}C$ to (1) cover the regime of the thermally controlled smectite-illite transition in clayey sediments and (2) purposely avoiding higher temperatures that are sufficient to trigger extensive metamorphism in nature. Pore fluid pressure was varied between $P_f = 20$ MPa, 60 MPa, and 120 MPa covering a wide range of hydrostatic and excess pore pressure conditions (Tables 1, 2 in supplementary material).
Mechanical data were obtained in phase 2 during sequential shear displacements at consecutive effective normal stress states, starting with an initial load of $\sigma_{n}^{\text{eff}} = 30$ MPa and increasing load by steps of 20 MPa, or in cases 40 MPa up to 110 MPa (Figure ??). At each effective normal stress step a sequence of increasing velocity (V) steps was carried out following the scheme 10-1-3-10-30-100 μm/s. Such low displacement rates are considered relevant for processes governing earthquake nucleation [Scholz, 1998; Dieterich, 1979]. In order to perform effective normal stress steps rotation of the motor was halted due to technical reasons, and the first velocity step after each increase at $V = 10$ μm/s served to establish a starting steady state microstructure.

To shut down the experiment, applied loads and conditions were removed in the reversed order during phase 3. After removal from the pressure vessel, the internal piston set was kept in an drying cabinet at 50°C over night to allow for an improved sample recovery.

3.3. Data evaluation

Shear strength (τ) of the various sediments tested was normalized using the effective normal stress (σ_{n}^{eff}) and expressed in terms of the dimensionless apparent friction coefficient ($\mu = \tau/\sigma_{n}^{\text{eff}}$) assuming zero cohesion. This is consistent with the usage of simulated fault gouges to investigate fault reactivation processes, rather than incipient fault formation within undisturbed sediments. The concept of shear strength contrasts is often used to predict, which material is more prone to host deformation localization within a heterogeneous and well stratified sedimentary succession [see e.g. Kopf, 2013; Kurzawski et al., 2016]. Complementary, the velocity dependence of sliding friction was explored and evaluated based on rate- and state-dependent friction (RSF) theory [Dieterich, 1979; Ruina, 1983]:

©2018 American Geophysical Union. All Rights Reserved.
\[
\tau = [\mu_0 + a \ln(V/V_0) + b \ln(V_0 \Theta / D_c)] \sigma_n^{eff}
\] (1)

where \(\mu_0\) constitutes a reference sliding friction value associated with a reference sliding velocity \(V_0\) prior to an instantaneous step towards a new velocity \(V\). \(D_c\) is the critical slip distance and the state variable \(\Theta\) evolves according to:

\[
d\Theta/dt = 1 - \Theta V/D_c
\] (2)

Most importantly, the friction term includes the parameters \(a\) and \(b\), which can be directly linked to material properties and microstructure if the underlying deformation mechanisms are known \([Chen and Spiers, 2016]\). Together, they constitute the key parameter \((a-b)\):

\[
(a - b) = \Delta \mu / \Delta \ln V
\] (3)

quantifying the frictional response to instantaneous displacement rate changes. Positive values in \((a - b)\) imply a stronger resistance to shear movement towards higher displacement rates. Such behavior is termed velocity-strengthening and facilitates stable aseismic sliding. As opposed to this, negative \((a - b)\) values denote velocity weakening corresponding to potentially unstable frictional behavior. For comprehensive reviews on the topic the reader is referred to the work of \(Marone [1998a]\) and/or \(Scholz [1998]\). In general, experimental records display superimposed slip hardening/weakening trends. These potentially constitute another material characteristic specified as slip hardening/weakening rate \(\eta = d \mu / dx \) (mm\(^{-1}\)) and were introduced as a potential mechanism for triggering
slow earthquakes if initial velocity-strengthening behavior can be overcome by long term slip weakening ($\eta < 0$) beyond a critical sliding distance W [Ikari et al., 2013b]:

$$W = (b - a) \ln(V/V_0) \eta^{-1}$$

We employed a least-squares minimizing inverse modeling technique to fit an extended version of Dieterich’s slowness law that applies two state variables to our experimental data [Reinen and Weeks, 1993, Figure ??c,d]:

$$\mu = \mu_0 + a \ln(V/V_0) + b_1 \ln(V_0\Theta_1/D_{c1}) + b_2 \ln(V_0\Theta/D_{c2})$$

(5)

The relation usually results in a better overall fit compared to the standard equation and is coupled with the elastic loading equation via the friction coefficient (μ), that constitutes the proportionality constant between shear stress (τ) and effective normal stress (σ_{n}^{eff}):

$$\tau = \mu * \sigma_{n}^{eff} + c$$

(6)

where c is the cohesion. Another benefit of this numeric approach is the acquisition of model values for all other parameters involved, including critical slip distance ($D_{c}\circ$). Slip weakening/hardening rate (η) and elastic stiffness (K), governing the transition from stable to unstable slip, are input parameters for the inversion and are therefore also acquired in this process. For the transition from stable to unstable slip, the stiffness of the loading system has to be lower than its critical value specified as

©2018 American Geophysical Union. All Rights Reserved.
\[K < K_{\text{crit}} = \sigma_n^{eff} (b - a)/D_c \] (7)

All inversion results associated with this study are listed in the supplementary material. In cases where the numerical inversion approach failed due to experimental artifacts or noisy records, values were hand picked using Eq. 3 and correction for slip dependent weakening/hardening trends was applied manually.

3.4. Quantitative whole rock mineralogy

Comprehensive mineralogical characterisations of our starting materials were carried out in terms of standard XRD-analysis, and complementary carbonate quantification by Bernard calcimetry, granulometry measurement and wet-chemical amorphous silica content determination. Particle size was determined by a laser particle counter (LS230 BECKMANN COULTER), after samples being disintegrated in a sodium hexametaphosphate 1g/L solution and dispersed. XRD analyses were performed on bulk powders prepared from dried and hand crushed original IODP samples using a Bruker D-4 Endeavor diffractometer mounted with a Vantec-1 detector using nickel filtered Cu-K\(\alpha\) radiation. Scans were run from 2\(^{\circ}\) - 65.146\(^{\circ}\) 2\(\theta\), with a step size of 0.040\(^{\circ}\) and 39.2 s/step. Standard locked coupled scan conditions were 40 kV and 30 mA. The identification of all minerals was performed using Bruker-AXS’s DiffracPlus EVA software and the ICDD Powder Diffraction File 2008 database (The International Centre for Diffraction Data). The Fityk software\(\odot\)v0.9.8 [Wojdyr, 2010] was used for the decomposition of overlapped peaks to better identify the different phyllosilicate components. Furthermore, we employed an al-
kaline leaching method to determine opal contents in our samples [DeMaster, 1981]. This wet-chemical dissolution technique is based on varyingly fast digestion rates of biogenic silica compared to aluminosilicates. When placed in an alkaline solution, the opal component of marine sediment is released most rapidly. The increase of the concentration of silica in the solution, however, is overprinted by a contribution from coexisting aluminosilicates, which manifests itself as a weak linear increase over time once all opal is consumed, and hence can be subtracted [Müller and Schneider, 1993]. For each sample, we dispersed approximately 40 mg of sediment in 400 g of 0.0316 M NaOH (pH 12.5) at 85 °C. The conditions are chosen to minimize the digestion of clay minerals [Schlüter and Rickert, 1998] and are adapted from Spinelli and Underwood [2004]. Aliquots (6 mL) of the leachate were collected about 5, 15, 30, 60, 90, 120, 180, 270 and 360 min after digestion began. The concentration of silica in the leachate was determined by spectrophotometry. The contribution of opal to the leachate was determined by projecting the flattened tail of the concentration curve back to time \(t = 0 \). In determining the weight percent of opal in the bulk samples, we assumed the water content of opal to be 11% by weight [Kastner et al., 1981].

4. Sample descriptions

4.1. Large scale lithostratigraphy

Representative samples chosen for ring shear tests cover a wide range of lithological units from the frontal prism, the upper and middle slopes of the upper Caribbean Plate, and the downgoing Cocos Plate. In Figure 1 the chosen samples are indicated by arrows next to the lithostratigraphic columns. For detailed descriptions the reader is referred to
the Proceedings of the IODP Expeditions 334 and 344 [Harris et al., 2013a, b; Expedition 334 Scientists, 2012a, b].

4.1.1. Incoming plate site U1414 - Unit IB (Sample 14H-6)

Unit I consists of unconsolidated massive dark greenish gray (silty) clay with abundant foraminifera and is divided into two subunits. Whereas Subunit IA (0-78.3 mbsf) contains significant amounts of sand layers and terrigenous material such as quartz, feldspar and lithic fragments, these components are much sparser in Subunit IB (78.3 - 145.34 mbsf), which exhibits a clear hemipelagic character and contains abundant calcareous nannofossils. Biogenic material, in general, and components such as radiolarians, foraminifers, and sponge spicules become more dominant in the clayey matrix and the unit is denoted light greenish gray calcareous nannofossil-rich silty clay. Sample 14H-6 originates from the incoming plate site U1414 (Figure 1) and was recovered from a depth of 124 meter below sea floor (Subunit IB).

4.1.2. Incoming plate site U1414 - Unit II (Samples 20H-2, 25X-4 and 30X-7)

Unit II (145.34 - 309.37 mbsf, Figure 1) comprises pelagic sediments and distinguishes itself from Unit I by its abundant biogenic content. This characteristic is clearly reflected in the change in color to light green, grey or even white. The sediment contains >70% biogenic components, such as spicules, diatoms, radiolarians, and nannofossils. As a general rule, calcareous components decrease and silicious components increase with respect to bore hole depth. Accessory minerals, such as feldspar, pyroxene, calcite and opaque minerals occur throughout the entire section. Subunit IIA (145.34-200.01 mbsf), where sample 20H-2 (174.32 mbsf) originates from, consists of massive, light green calcareous ooze. It further contains smectite and zeolite, which do not occur towards
deeper parts of the sequence. Subunit IIB (200.01 - 309.37 mbsf) comprises an alternating sequence of dark grayish to greenish silty clayey calcareous ooze (sample 25X-4, 224.97 mbsf) and white calcareous ooze containing abundant sponge spicules (sample 30X-7, 275.59 mbsf). The amount of diagenetic opal increases with depth.

4.1.3. Frontal prism site U1412 - Unit I (Sample 2H-1)

Unit I (0.00 - 204.74 mbsf) of the frontal prism site U1412 is dominated by terrigenous clay sediments. The material is described as massive dark greenish gray clay intercalated with silty clay horizons. Besides clay minerals, the main silty accessory matrix components comprise feldspar and lithic fragments. Nannofossils, diatoms and fragments of diatoms and radiolarians are common biogenic constituents. Sample 2H-1 was recovered from a depth of 7.25 mbsf.

4.1.4. Frontal prism site U1412 - Unit III (Sample 8R-6)

At the frontal prism site U1412 Unit III represents a well sorted clayey siltstone (Sample 8R-6, 365.09 mbsf) with minor interlayered sandstone. Sandstone horizons occur more abundantly towards deeper portions of the hole. Also organic material that is generally sparse increases with depth. Dominant matrix constituents are clay minerals, abundant feldspar and rock fragments, biogenic components, as well as various accessory minerals.

4.1.5. Midslope site U1378 - Unit IIA (Samples 24X-4 and 42X-4)

Unit II at the midslope site U1378 consists of a monotonous sequence of terrigenous sediments dominated by olive-green clayey silt(stone) and silty clay(stone) (Subunit IIA, Samples 24X-4, 194.8 mbsf and 42X-4, 348.75 mbsf) with minor occurrences of sand(stone) layers (Subunit IIB). In contrast to the incoming plate and frontal prism sites, sediments are rather firm and more consolidated. Main constituents are clay minerals, and feldspar
and lithic fragments in the silt fraction. Clay minerals which have been observed in all oclay-rich samples are kaolinite, chlorite/smectite (C/S) and illite/smectite (I/S). Biogenic components are rare.

4.1.6. Upper slope site U1379 - Unit III (Sample 101X-5)

At the upper slope site U1379 Unit III (651 - 880.07 mbsf) consists mainly of olive-green silty sands and sandstones. Coarse sandy deposits are reported to make up to 64% of the total unit thickness, alternating with finer hemipelagic deposits (Sample 101X-5, 866.95 mbsf). Main components are feldspar and lithic fragments. The most abundant accessory component is chlorite, followed by volcanic glass, opaque minerals and amphibole.

4.2. Semi-quantitative whole rock mineralogy

Quantitative sample compositions as derived from XRD analysis and complementary wet-chemical leaching are in line with the previous descriptions and are summarized in Table 1. Quartz values represent combined amounts of crystallized biogenic material and clastic rock fragments. Identified minerals with unspecified amounts are indicated by ‘x’. Based on those results, two groups of samples can be defined. The first group comprises samples that contain no significant amounts of clay minerals but rather show large amounts of calcite (1414-30X7, 1414-20H2 and 1414-25X4). The second group corresponds to samples showing total clay contents (chlorite, illite/smectite, smectite/chlorite) of about 20-30 wt% (1412-2H1, 1378-42X4, 1414-14H6, 1379-101X5). Opal is present in all samples in moderate amounts of ≈ 5 wt%.
5. Experimental results

5.1. Frictional strength

Peak or yield frictional strength ($\mu_{p/y}$), respectively, were determined from the run-in velocity step at $v = 10 \, \mu\text{m/s}$ for each effective normal stress step. Variations in frictional strength as a function of temperature (T), pore fluid pressure (P_f) and effective normal stress (σ_{eff}^n) are more or less pronounced depending on sample composition and especially the carbonate content (Figure 3). Carbonate contents were derived from the IODP LIMS Reports online repository (http://web.iodp.tamu.edu/UWQ). Measurements were conducted by the shipboard parties of the IODP expeditions 334 and 344 onboard *DV JOIDES Resolution*, who applied ion chromatography. Additionally, XRD-analysis and calcimetry results on our samples are presented in Table 1.

5.1.1. Incoming plate pelagics

Peak/yield friction of carbonate-rich pelagics from the incoming plate are highly sensitive to applied experimental conditions, varying between $0.3 \leq \mu_{p/y} \leq 1$. The pelagics are predominantly strong with $\mu_{p/y} \geq 0.6$ and, as a general trend, tend to be weak at high temperatures and pore fluid pressures (Figure 3a,e). In fact, all experiments resulting in low apparent friction coefficients below $\mu_{p/y} \leq 0.5$ were conducted at $T = 140^\circ\text{C}$, except for one experiment at room temperature and high pore fluid pressure of $P_f = 120 \, \text{MPa}$. Peak/yield values resulting from all other room temperature experiments cluster at the higher end of the frictional strength spectrum, together with those from experiments conducted at $T = 70^\circ\text{C}$ (Figure 3a,e). All of those experiments represent low to intermediate pore pressure states. Two experiments on calcareous ooze gouge (sample 30X-7) conducted at identical conditions ($T = 140^\circ\text{C}, P_f = 120 MPa$) show an extreme...
deviation in terms of peak/yield frictional strength at $\sigma_{n}^{eff} = 30 MPa$, that gradually tapers off with increasing effective normal stress. These data reveal the existence of at least one further parameter, that significantly affects the apparent friction coefficient of carbonates that was not controlled in our experiments. We comment on this later in the discussion section. Finally, the data suggest that overall frictional sliding strength is somehow related to the carbonate content of the samples. All calcareous pelagics consistently show higher apparent friction coefficients than samples with low carbonate content. However, there is no systematic correlation with changing carbonate content. Sample 20H-2, showing the second highest carbonate content of > 60 wt%, reaches only intermediate frictional strength values between $0.52 \leq \mu_{p/y} \leq 0.68$. Sample 25X-4, consisting of ≈ 45 wt% carbonates, however, shows the second highest frictional strength in the range of $0.6 \leq \mu_{p/y} \leq 0.87$ (Figure 3a).

5.1.2. Incoming plate hemipelagics

Hemipelagic silty clay (sample 14H-6) from the overlying portion of the incoming sediment section is weak in terms of sliding friction, and more importantly shows only minor variations in frictional strength in response to changes in experimental conditions. Apparent peak/yield friction coefficients cover the narrow range between $0.26 \leq \mu_{p/y} \leq 0.51$ (Figure 3b,f). Despite these little variations, the samples exhibit some minor positive trends with increasing temperature, pore pressure and effective normal stress. Effects of temperature and pore fluid pressure are more pronounced at low effective normal stress states up to 50 MPa, whereas above 50 MPa, effective normal stress itself is the crucial parameter resulting in a positive trend in frictional strength. In the following, systematics at low effective normal stress are exemplarily described for the lowest effective normal stress.
stress step at $\sigma_{nf}^{eff} = 30$ MPa. The samples exhibit their lowest frictional strength at room temperature and low pore fluid pressure of $P_f = 20$ MPa. Increasing temperature and pore fluid pressure simultaneously causes a slight increase in the apparent friction coefficient from $\mu_{p/y} = 0.26$ over 0.32 at $T = 70^\circ$C and $P_f = 60$MPa to 0.36 at $T = 140^\circ$C and $P_f = 120$MPa, suggesting a positive relation for the combined effect of the two parameters. Separate variations in only one of the parameters, however, reveal a more complex interdependency. At room temperature, an increase in pore fluid pressure from $P_f = 20$ MPa to 120 MPa resulted in significant frictional strengthening from $\mu_{p/y} = 0.26$ to 0.48. By contrast, increasing pore fluid pressure by 60 MPa at $T = 140^\circ$C leads to reduction of frictional strength from $\mu_{p/y} = 0.51$ to 0.36.

5.1.3. Frontal prism clastics

Similar to pelagics, fine-grained clastic slope sediments from the frontal prism site U1412 in the vicinity of the MAT (clayey silt sample 2H-1 and silty clay sample 8R-6 respectively), cover a relatively broad range of peak/yield apparent friction coefficients. These samples, however, encompass the lower end of the frictional strength spectrum ranging between $0.08 \leq \mu_{p/y} \leq 0.56$ including the lowest apparent peak/yield friction coefficients of the entire dataset at $T = 70^\circ$C, $P_f = 20$ MPa and $\sigma_{nf}^{eff} = 30$ MPa (Figure 3c,g). Compared to calcareous pelagic sediments, these samples show a reverse dependency of sliding friction on temperature and pore fluid pressure. The highest values in apparent friction coefficient coincide with high temperature and pore fluid pressure conditions. Two experiments on silty clay (sample 8R-6), both conducted at $T = 70^\circ$C reveal an increase in peak/yield frictional strength with respect to increasing pore fluid pressure. Between these two experiments only pore fluid pressure was increased by 40 MPa from $P_f = 20$
to 60 MPa, resulting in a consistent increase in sliding friction by $\Delta \mu_{p/y} \approx 0.2$ for each effective normal stress step.

5.1.4. Upper and middle slope clastics

Clastic sediments from the upper- and middle slope sites, respectively, consistently exhibit very low carbonate contents $<< 10\%$ and show relatively unvaried frictional strength records, covering the intermediate range of $0.26 \leq \mu_{p/y} \leq 0.59$ (Figure 3d,h). The slope sediments show positive trends with increasing effective normal stress. The samples also exhibit a positive strength relation to the combined effects of increasing temperature and pore fluid pressure, especially at low effective normal stress.

5.2. Frictional stability

Frictional stability of all samples tested is shown in terms of the RSF parameter $(a - b)$ as a function of effective normal stress (Figure 4).

5.2.1. Incoming plate sediments

Gouges prepared from calcareous pelagic sediments (samples 20H-2, 25X-4 and 30X-7; Figure 4a) and hemipelagic silty clay (sample 14H-6; Figure 4b) from the incoming sediment section show important differences with respect to frictional stability. Silty clay gouge shows decreasing $(a - b)$ values towards lower effective normal stress states within the range of $0.002 \leq (a - b) \leq 0.02$ at $\sigma_{eff} = 110$ MPa to $-0.015 \leq (a - b) \leq 0.008$ at $\sigma_{eff} = 30$ MPa, except for one experiment that was conducted to explore elevated pore fluid pressure (60 MPa) at room temperature (Figure 4b). This experiment shows a stabilizing effect of pore pressure at low effective normal stress, shifting $(a - b)$ towards higher values ($(a - b) \leq 0.017$ at $\sigma_{eff} = 30$ MPa). In all other experiments, velocity-weakening behavior is strongest at the lowest effective normal stress step ($\sigma_{eff} = 30$ MPa),

©2018 American Geophysical Union. All Rights Reserved.
where it occurs at all temperatures, and up to $\sigma_{n}^{eff} = 70$ MPa at room temperature. The samples tend to velocity-strengthen at a combined temperature and pore fluid pressure increase (Figure 4b, color shading).

Frictional stability of gouges prepared from calcareous pelagic sediments from greater depth strongly depends on the carbonate content. Sample 25X-4 with the lowest carbonate content ($\approx 45\%$; Figure 3a) encompasses negative $(a-b)$ values in both experiments, markedly at low effective normal stress where velocity weakening occurs at $T = 70$ and $140\ ^\circ C$ (Figure 4a). The sample shows a consistent shift towards lower $(a-b)$ values in the $140\ ^\circ C$ experiment. By contrast, sample 20H-2, consisting of $\approx 60\%$ carbonate, shows no obvious dependency on any parameter and displays almost exclusively velocity-strengthening behavior. Calcareous ooze sample 30X-7 contains $\approx 90\%$ carbonate and exhibits the most distinctive frictional behavior (Figure 4a). The sample is mostly velocity neutral at room temperature and $P_f = 20$ MPa, and shows a slight tendency to velocity strengthen at the highest effective normal stresses tested. At $70\ ^\circ C$ and $P_f = 60$ MPa, negative $(a-b)$ values were only recorded at the lowest effective normal stress step ($-0.003 \leq (a-b) \leq 0.003$; 30 MPa), whereas strong velocity-strengthening behavior ($0.012 \leq (a-b) \leq 0.031$) occurs in all other stress steps. At the highest conditions tested ($140\ ^\circ C$ and $P_f = 120$ MPa), calcareous ooze gouge is velocity strengthening ($0.013 \leq (a-b) \leq 0.026$) at high velocity steps, but show frictionally unstable behavior indicated by stick-slip events at low velocity steps (Figure 4a). Unstable behavior covers a broader velocity range with increasing effective normal stress. It was not possible to obtain constitutive RSF parameters for instances of unstable slip via inversion. Therefore, the range of stick slip occurrence in terms of effective normal stress is marked by a side
bar. More detailed results of experiments on this exact sample (and hemipelagic silty clay sample 14H-6) are described in Kurzawski et al. [2016].

5.2.2. Slope sediments

Simulated gouges prepared from all overriding plate sites show very similar behavior in terms of frictional stability (Figure 4c,d). Apart from a few exceptions, all samples exhibit a slightly broader range of \((a - b)\) data spanning both, positive and negative values at their two lowest effective normal stress steps. With increasing \(\sigma_n^{eff}\) this range becomes smaller and shifts to the velocity strengthening side, apart from sample 2H-1 deformed at 140 °C. The trend of slightly increasing values towards higher effective normal stress is not affected by temperature and pore fluid pressure changes.

5.3. Slip weakening/hardening rates

Long-term slip dependence of sliding friction was measured from the linear part of each velocity step, representing steady state changes in friction coefficient with displacement \(\eta = d\mu/dx \,[\text{mm}^{-1}]\). Positive values in \(\eta\) represent long term slip hardening, while slip-weakening behavior is revealed by negative values (Figure 5a-d) and can result in net weakening and slip instability [Ikari et al., 2013b]. This linear hardening/weakening behavior might be affected by material loss during the course of the experiments which might affect the measured friction by getting jammed in between the piston and the confining rings, and our presented results will be discussed under consideration of the evolution of experimental gouge layer thickness. In the following we will focus on key observations and will not describe the specific behavior of each sample in detail.

Experimental results show that slip weakening behavior is thermally controlled. With only few exceptions, room temperature experiments consistently show slip hardening.
records ($\eta > 0$, Figure 5a–d), including the highest values of the entire dataset of up to $\eta \approx 0.03$ mm$^{-1}$ from upper slope clastics (Figure 5d). By contrast, slip weakening ($\eta < 0$) is almost exclusively characteristic of heated experiments and is displayed in the records of all samples tested. Its occurrence and especially its dependency on applied experimental conditions vary with sample composition.

5.3.1. Incoming plate sediments

Pelagic and hemipelagic incoming sediments display distinct differences in slip rate behavior. Pelagic sediments show extensive slip weakening records making up approximately 50% of their entire slip dependence spectrum (Figure 5a). Strongest slip weakening ($\eta \approx -0.015$ mm$^{-1}$) occurs at $T = 70^\circ$C and all sliding velocities for all pelagic samples (Figure 5a). There are, however, no obvious trends in terms of temperature, sliding velocity or effective normal stress, and the data appear somewhat scattered.

Silty clay (sample 14H-6) is predominantly slip hardening with invariantly high rates up to $\eta = 0.017$ mm$^{-1}$ at all velocities and room temperature (Figure 5b). Highest values occur at high effective normal stress. The hardening rate ranges between neutral or slight slip hardening at $T = 70^\circ$C. It exhibits strong slip hardening ($\eta \approx 0.02$ mm$^{-1}$) at highest velocities. Slight slip weakening behavior (-0.006 mm$^{-1} < \eta < -0.002$ mm$^{-1}$) is recorded in experiments at $T = 140^\circ$C, showing a trend to stronger slip weakening towards decreasing load point velocities.

5.3.2. Prism toe clastics and slope sediments

Prism toe clastics and slope sediments preferentially show slip-hardening behavior ($\eta \lesssim 0.025$, Figure 5c, d; $\eta \lesssim 0.03$, Figure 5d). Clay sample 2H-1 from the frontal prism site U1412, however, also exhibits strong slip weakening at $T = 70^\circ$C and $P_f = 20$
MPa \((\eta \geq -0.019 \, \text{mm}^{-1}; \text{Figure 5c}) \). Midslope and upper slope sediments display a wide range of slip dependence within the range \(-0.011 \leq \eta \leq 0.03 \, \text{mm}^{-1} \) (Figure 5d), consistent with previous observations, such as high slip hardening rates at room temperature and some slip weakening in heated experiments.

5.4. Slip-weakening distances

The so-called critical slip-weakening distances \((W) \) result from the link of velocity- and slip dependence (Eq. 4), and were suggested to illustrate the potential to initiate unstable slow slip via slip weakening within the subduction channel (Ikari et al. [2013b]; Figure 5e-h). Such behavior is favored, if materials (1) exhibit velocity-neutral or only weak velocity-strengthening behavior \(((a-b) \approx +0) \) to constitute a small barrier that has to be overcome, and/or (2) require only a small amount of displacement for friction to fall below its initial value \((\mu < \mu_0; \text{small } W) \). Note how the amount of data in the lower panels is decimated in comparison to total slip-weakening occurrences \((\eta < 0; \text{shaded areas in Figure 5a-d}) \). \(W \) is always positive, as it characterizes frictional behavior that is both velocity-strengthening and slip-weakening. \(W \) values obtained here, especially those giving large numbers on the scale of several mm to several cm, have to be handled with care as they assume unchanged hardening/weakening rates over considerably larger amounts of displacement than actually measured in velocity steps.

5.4.1. Incoming plate sediments

Calcareous pelagics (Figure 5e) are the more likely candidates to trigger slip weakening instability compared to hemipelagic silty clay (Figure 5f). The large amount of data points comprising very low \(W \) values \((W \geq \approx 0.2 \, \text{mm}) \) and also the wide range of conditions allowing such behavior favor carbonates. Critical slip-weakening distances can be observed
for all experimental conditions but predominantly at $T = 70$ and 140°C. By contrast, minimum critical slip-weakening distances in hemipelagic silty clay are almost one order of magnitude higher ($W \geq \approx 1.8$ mm) and mostly require temperatures higher than $T = 70^\circ$C (Figure 5f).

5.4.2. Slope sediments

Samples from the frontal prism exhibit the lowest critical slip distances of the data set ($W \geq \approx 0.02$ mm; Figure 5g) and are prone to slip weakening instabilities in experiments at $T = 70^\circ$C and $P_f = 20$ MPa. Sediments from the middle and upper slopes show intermediate W values.

6. Discussion

The experimental results of this study shed light on the dependence of fault slip modes along the Costa Rican plate boundary décollement, including shallow aseismic creep, slow slip, and seismic rupture, on the frictional behavior of the various subducted sediments. In the following we intend to elucidate the frictional behavior based on the rotary shear tests at hydrothermal conditions. We also discuss the significance of carbonate gouge for shallow seismicity and the implications of our experimental results for subduction plate boundary deformation in general.

6.1. Frictional strength

Sliding frictional strength of the investigated sediments is highly variable, and gets further complicated under changing ambient conditions during subduction over time. Variations in frictional strength and especially the evolution of strength contrast determine
which of the different sediments in the subduction channel is prone to localize strain and host the décollement.

Apparent friction coefficients of calcareous sediments are extremely sensitive to ambient conditions such as effective normal stress, temperature and pore fluid pressure, particularly when compared to clastic sediments, which show a more uniform frictional strength (Figure 3). This means that strength contrasts between different materials within the subduction channel vary as a function of burial depth with strong implications for the localization of the décollement and associated faults, that are expected to localize within the weakest material present. Our data support the findings of Kopf [2013] who investigated incoming plate sediments from ODP leg 170 in rotary shear at room temperature and showed that the frontal tip of the subduction thrust cuts into the weakest material ($\mu = 0.16 - 0.25$). Our sample set comprises hemipelagics from the incoming plate as well as slope sediments from the prism toe (samples 1414-14H6 and 1412-2H1, respectively), which show comparably low frictional strength at conditions for shallow subduction (Figure 3b/f,c/g). The lowest sliding friction values ($\mu < 0.1$), however, are exhibited by prism toe clastics at 70°C. Toward greater burial depths the clastic sediments tend to strengthen with increasing effective normal stress and are less affected by changes in temperature and pore fluid pressure, as opposed to calcareous lithologies, which show significant variations including even a weakening with increasing effective normal stress. The dramatic weakening as a function of temperature and pore fluid pressure might promote earthquake nucleation within carbonates at depth and was explored in detail by Kurzawski et al. [2016] for variations in internal friction. The apparent friction coefficient is strictly speaking only characteristic of faults in movement and not relevant for earth-
quake nucleation processes, as it neglects cohesion and stationary restrengthening. Hence, any fault restrengthening due to frictional healing or veining during the seismic cycle that was shown to significantly affect fault friction in numerous studies [Dieterich, 1972; Beeler et al., 1994; Marone, 1998b; Marone and Saffer, 2015; Chen et al., 2015; Carpenter et al., 2016] is not accurately described. Also, it was recently shown that healing during holds prior to reshearing of carbonate gouge might result in a shift in the RSF parameter (a-b) and additionally affect the frictional stability [Chen et al., 2015; Carpenter et al., 2016].

Extremely low friction coefficients ($\mu < 0.1$) recorded in prism toe clastics at 70°C (Figure 3c/g) may be caused by trapped and pressurized fluid lubricating the faces of sheet silicates. The permeability of clay-rich sediments is very low compared to any other sediment, meaning that such lithologies are much more susceptible for the occurrence of pore pressure transients. Again, systematic studies are required to quantify these effects as they might be relevant for post-seismic relaxation and/or triggered movements associated with Coulomb stress transfer.

6.2. Pore fluid pressure and locking degree

The locking degree of the plate boundary fault is one important model parameter characterizing the seismogenic potential for megathrust earthquakes. A fully locked plate boundary interface is believed to facilitate the build-up of elastic strain, which can be released in a large seismic event. According to the stiffness equation (Equation 7) an increasing pore fluid pressure is expected to cause a drop in critical stiffness, thereby counteracting any frictional instability. Hence, an elevated pore fluid pressure has a stabilizing, and therefore unlocking effect on the plate boundary interface. In a subset of our experiments we investigated the individual effect of pore fluid pressure variations on the
frictional stability of distinct lithologies as displayed by the RSF parameter \((a - b)\). For this purpose, pelagic calcareous ooze gouge, hemipelagic silty clay gouge, and prism toe clastics gouge were deformed at 2-3 different pore fluid pressure and temperature states (Figure 6). Some of these tests encompass extreme experimental boundary conditions (like the test at \(T = 140^\circ C\) and \(P_f = 20\) MPa) presumably not representative for the natural situation but important to illuminate the full parameter space. The resulting shift towards higher \((a - b)\) values, i.e., a more pronounced velocity-strengthening behaviour, indicates a frictional stabilization with increasing pore fluid pressure. This effect is strongest within hemipelagic silty clay gouge at room temperature, and especially at low effective normal stress (Figure 6b). It also occurs at high temperature (Figure 6e), and is characteristic of the prism toe clastic gouge, as well, though less pronounced (Figure 6c). Calcareous ooze gouge, however, significantly deviates from this trend. At \(T = 140^\circ C\), the opposite dependency is preferentially encountered (Figure 6d), namely a shift towards velocity-weakening behavior and stick-slip occurrence implying negative \((a - b)\) values. Frictional destabilization becomes stronger towards higher effective normal stress states as expected from the critical stiffness equation, where slip instability also covers an increasingly broad velocity range. A shift to negative \((a - b)\) values also occurs at room temperature and low effective normal stress. These results clearly demonstrate that the general assumption of a pore pressure related stabilization of the plate boundary fault zone constitutes a vast oversimplification because it does not take into account the possible effects of pore fluid pressure on the shearing process itself. Rather, in the critical stiffness equation, pore fluid pressure only plays a mechanical role by lowering the effective normal stress. Our experimental results show that besides this mechanical effect, the pore fluid pressure has a direct
effect on the velocity dependence of friction, i.e. (a-b). The presence of overpressurized fluid might result in a quite different outcome depending on the specific combination of present rock type and ambient conditions. Further detailed parameter studies are needed to better understand the conditions for frictional (de-)stabilization and locking of plate boundary faults.

6.3. Shallow slow slip generation

The occurrence of plate boundary slip transients such as slow slip events (SSEs), low-frequency earthquakes (LFEs), very low-frequency earthquakes (VLFEs) and tremor was believed to be restricted to the depth range between 30−50 km, i.e. towards the downdip end of the upper seismogenic zone. A wealth of seismological and geodetic observations along well instrumented convergent margins summarized by Saffer and Wallace [2015], suggests that near-trench shallow slow earthquakes are also a common phenomenon occurring in most subduction zones on the planet. However, the spatial range and ambient conditions of shallow slow slip vary significantly between individual subduction zones asking for common and varying causes. Elevated temperature, compaction-related pore space reduction, as well as fluid release due to early diagenetic mineral dehydration reactions were ruled out as primary factors controlling shallow slip [Saffer and Wallace [2015], and references therin]. It has been suggested though, that source regions of shallow slow slip coincide with zones of the most severe pore fluid overpressure along the plate interface [Saffer and Wallace, 2015].

Recently, an alternative mechanism for the possible generation of slow slip events was proposed by Ikari et al. [2013b]. This mechanism invokes linear slip weakening in combination with (mildly) velocity strengthening behaviour and was inspired by the observation
of different slip hardening/weakening trends observed in experiments on clay-rich samples from IODP drilling in the Nankai through. Traditionally, these trends are removed from the inversion of the data to obtain the response due to a perturbation of load-point velocity by subtracting linear fits, with the argument that these are backgrounds trends and that as such they are unrelated to the transient effects of the velocity perturbation [Blanpied et al., 1998]. The weakening/hardening is believed to be result of an evolution of the microstructure, e.g. the evolution of localized shear bands such as R1 or boundary shears [Blanpied et al., 1998; Ikari et al., 2013b]. Ikari et al. [2013b] argue that the removed trends are in fact part of the material behaviour and should as such be taken into account when we apply our friction data to nature. In order to do so, these authors defined a critical sliding distance \(W \) (not to be confused with the seismological or high velocity friction slip weakening distance) as specified in Equation 4. It was argued that if \(W \) is small, linear slip weakening should dominate fault behaviour and accelerated slip is possible. However, there are a number of issues to consider here. First, any weakening or hardening trend observed in experiments could be a result of experimental artifacts. In direct shear configurations in a triaxial set-up, this could be a change in load-bearing area with displacement. In our rotary shear configuration, syn-shear material loss might produce two types of artifacts: (1) experimental gouges displaying heterogeneous grain size distributions with a significant clay fraction, such as our silty clay gouges, are expected to progressively release clays into suspension within the pore water and might be squeezed out from in between the internal pistons. This effect should enhance gouge layer thinning compared to other lithologies, and cause slip hardening due to bulk compositions enriched in quartz and feldspar (type I artifact). (2) The loss of material implies thinning of the
experimental gouge layer, leading to a thinning rate dependent strain rate increase. Consequently, velocity-weakening material might show apparent slip-weakening behavior, and as opposed to this, velocity-strengthening material might apparently slip-harden (type II artifact). This second effect is expected to be visible in monomict materials such as the calcareous ooze gouge used in our experiments. Figure 7 summarizes the evolution of experimental gouge layer thickness under load in representative experiments on pelagic calcareous ooze gouge and hemipelagic silty clay gouge. Slip hardening/weakening rates are correlated with the corresponding gouge layer thickness.

Under load, there is a significant difference in starting layer thickness between calcareous ooze gouge ($\approx 950 \mu m < h < 1100 \mu m$) and silty clay gouge ($\approx 650 \mu m < h < 700 \mu m$). This is easily explained by the higher compressibility of clays, and implies considerably higher strain rates in experiments on silty clay gouges. Thinning trends, however, are surprisingly similar in both materials, except for much stronger thinning in the calcareous ooze gouge at room temperature. Taking into account, that our calcareous ooze gouge dominantly consists of clay sized calcite particles [Kurzawski et al., 2016] (i.e. particles that preferentially suspend in the pore fluid), comparable thinning trends are indeed logical. It follows, that strain hardening/weakening rates were acquired at different underlying strain rates, but the shift in strain rate remains more or less constant in the course of the experiments. Thinning rates are high during the run-in velocity step after each effective normal stress step, but decrease during ongoing shear (Figure 7). Therefore, the contribution of the type II artifact to acquired strain hardening/weakening rates seems to be negligible in most cases. In general, η shows positive trends as a function of displacement, i.e. decreasing gouge layer thickness, and effective normal stress (Figure

©2018 American Geophysical Union. All Rights Reserved.
7). Much of the slip hardening behavior of silty clay gouge, representing a heterogeneous mineral assemblage (Table 1), might therefore actually be caused by the type I artifact. Calcareous ooze gouge, however, is not susceptible to the type I artifact due to its monomict character (Table 1), and indicates a positive dependency of η on effective normal stress. In Figure 7, consecutive effective normal stress steps are identifiable at sharp bends in the layer thickness. Most of the slip weakening occurrences are recorded in velocity steps showing velocity strengthening behavior, and are therefore not masked by the type II artifact. Both materials show differences in η as a function of temperature and pore fluid pressure. This cannot be explained by either experimental artifact.

For the sake of argument, we will assume here that most of the weakening/hardening trends reflect material behaviour. Then there is still the issue that these trends are assumed to be steady state and linear. In fact, one could argue that if there is any hardening or weakening, then in actual fact the real slip velocity is different from the load-point velocity applied and as such is not steady state and (a-b) is in fact not defined. Moreover, the linear weakening with displacement implies an unrealistically low or even negative friction for the displacements involved in SSE events (e.g. taking η is 0.02 mm\(^{-1}\) and a displacement of 10 mm and 50 mm, gives a friction drop of 0.2 and 0.5, respectively, from a "base" friction of 0.3). The evolution of the microstructure into localized shear bands must at some point be complete as demonstrated e.g. by Logan et al. [1992], so the weakening or hardening must slow down and come to a halt. There are two ways to circumvent the problem of linear weakening: 1) we can define the weakening in terms of strain, rather than displacement or 2) we can treat the weakening as a second state variable. The first approach has a clear physical background. As has been shown by Logan
The development of the microstructure is more a function of shear strain than of absolute displacement: weakening for gouges with different thicknesses is the same when plotted vs. shear strain. The occurrence of accelerating slip can then be thought of being the result of localization, whereas delocalization would result in decelerating slip. The second approach is appealing because it allows us to use the rate-and-state framework to study the nucleation of SSE’s, which is then controlled by the relative values of D_{c1} and D_{c2} as well as the relative values of $(a-b_1)$ and $(a-b_2)$. When the second evolution distance is large (on the order of 1 mm), the friction response as seen in laboratory tests with 0.5 to 1 mm displacement would be virtually indistinguishable from a linear response (Figure 8). Fitting these type of data with a second state variable would however result in a relative large error in both b_2 and D_{c2}, since not enough data is available. This can only be resolved by allowing more displacement between velocity perturbations, which is beyond the scope of the present manuscript.

At Costa Rica, shallow slow slip is reported to occur within the exceptionally cool temperature range between $12-60^\circ C$ [Dixon et al., 2014], that differs from the region of major clay dehydration [Saffer and Wallace, 2015]. Apart from the discussed reservations, our mechanical data show mildly velocity strengthening and slip weakening behavior in this temperature range (Figure 5a,e). Subducted carbonates turn out as the most likely candidates for the generation of slow earthquakes via the mechanism proposed by Ikari et al. [2013b]. In comparison, the hemipelagic silty clay gouges tend to slip-harden and show a strong temperature dependence of η. The frictional behavior to trigger slow slip is given at $140^\circ C$ with an approximately one order of magnitude higher critical slip-weakening distances (Figure 5b,c). Finally, the potential for unstable slow slip increases towards lower
effective normal stress. This might explain post seismic slip transients in regions of stress relaxation and negative Coulomb stress transfer. The slip weakening/hardening data presented by Ikari et al. [2013b] cover a comparable range ($\approx -0.015 \leq \eta \leq 0.007$). However, their strongly slip-weakening behavior was recorded at room temperature, whereas our samples in the most cases required at least 70°C for comparably marked values. This discrepancy might be explained by the higher sheet silicate content of Nankai trough clays compared to our silty clays and carbonates.

6.4. Carbonates as most likely candidates for unstable slip

The data presented here suggest that the occurrence of differing fault slip modes like the nucleation of large plate boundary earthquakes or slow slip events largely depend on the mechanical properties of pelagic sediments from the incoming oceanic plate. Because of the erosive nature of the Costa Rican subduction zone this appears to be surprising, as most of the sediments in the subduction channel should originate from the overriding plate [von Huene et al., 2004; Vannucchi et al., 2012]. In our laboratory experiments at conditions corresponding to the updip limit of seismogenesis, only the pelagic calcareous ooze from the incoming plate produced frictional stick-slip instabilities, which have long been considered an analogue for natural earthquakes [Brace and Byerlee, 1966]. Material that is possibly incorporated into the subduction channel and could not be considered in our experiments is the Osa Mélange, a middle Eocene - middle Miocene rock assemblage dominated by basalt, chert and limestone [Meschede et al., 1999; Vannucchi et al., 2006]. In terms of lithology, this assemblage might represent oceanic basalt and its pelagic sedimentary cover.

©2018 American Geophysical Union. All Rights Reserved.
First results reported from the 2011 3D-seismic survey of the CRISP study area provide important insights into the internal structure of the forearc wedge. The extent of the frontal paleoaccretionary prism reaches presumably 30-40 km landward from the trench [Vannucchi et al., 2013, 2017; Bangs et al., 2016], much more than previously thought. These authors also agree that the bulk of the marginal wedge beneath the middle and upper slope is formed by clastic material. According to Bangs et al. [2016] this clastic material was deposited at about 5 Ma on the incoming plate and was accreted shortly afterwards. In addition, the outermost edge of the continental margin represents a small (< 10 km wide) but active frontal accretionary prism consisting of pelagic and hemipelagic sediments [Bangs et al., 2016]. These findings have farreaching implications for the material budget within the subduction channel, that is usually compositionally dominated by continental forearc material removed by tectonic erosion. In fact, the first 30-40 km of the forearc consist of previously accreted incoming plate sediments, implying considerable amounts of pelagic and hemipelagic lithologies that may form the base of each consecutive thrust sheet assuming the geometrical model of Vannucchi et al. [2017]. Although the relative proportion of such lithologies within the subduction channel is probably low compared to continental clastic sediments, the deformation or fault slip mode along the shallow part of the megathrust and the updip limit of seismogenesis could be controlled by the mechanical properties of these sediments.

Velocity-weakening (i.e. potentially unstable) behavior of hemipelagic and clastic sediments, preferentially occurring at cold conditions and low effective normal stress representative for the most shallow reaches of the plate boundary, deserves some attention. As already mentioned, the occurrence of frictional instability is controlled by the critical
stiffness of the system and is linked to velocity-weakening behavior via Equation 7. Here, systematical studies investigating the evolution of stiffness as a function of normal stress, temperature and pore fluid pressure are needed to assess the potential for the emergence of slip instability in such material due to changes in critical stiffness. Alternatively, assuming that stiffness of the testing system (machine + gouge) does not vary seriously among the tests performed with different materials, occurrences of stick-slip in calcareous ooze might imply smaller values of Dc. However, it is not possible to verify this, as there are no inversion results (and therefore no Dc values) for instances of stick-slip and there is no clear trend in Dc values for our inversion results (Supplementary Figure 1). In this context, also the scaling of critical slip distances to natural dimensions needs to be better understood in order to allow for proper quantification of the critical stiffness in nature. At the same time, a microphysical understanding of (a-b) is needed for reliable extrapolation. First steps to realize this have recently been made by Chen and Spiers [2016] and Ikari et al. [2016].

The Costa Rica segment of the Middle America Trench is the locus of increased tectonic erosion due to the subduction of the Cocos Ridge. In particular, Cocos Ridge subduction causes a progressive increase in the geothermal gradient towards the ridge axis, and results in a shift in seismicity towards shallower levels equivalent to lower normal stresses [Van-Nucchi et al., 2010]. Based on our experiments this shift of the upper seismogenic zone in the vicinity of the Cocos Ridge cannot be explained by the temperature-controlled change in frictional behavior of calcareous ooze gouge alone. Nevertheless, frictional instability of this material does not require any mineral transformations, such as e.g. the smectite to illite transition, and is capable of triggering exceptionally shallow seismic events where the
geothermal gradient is sufficiently high. Such shallow earthquakes have a high tsunami-genic potential, as related ruptures have a high potential to propagate to the trench. Past slip to the trench at Costa Rica was recently revealed by the discovery of a recent thrust fault cutting the frontal prism at IODP Site U1412 [Vannucchi et al., 2017]. In combination with this discovery it was shown that both, calcareous oozes and silty clays are approximately equally weak at experimental coseismic slip velocities [cf. Fig. 3b of Vannucchi et al., 2017], and can, therefore, host rupture propagation. One of the central messages of Kurzawski et al. [2016], however, is that calcareous oozes are instrumental in nucleating earthquake slip at low, pre-seismic rates of movement.

7. Summary and Conclusions

We conducted a systematic experimental study on frictional properties of subduction channel input sediments recovered during IODP Expeditions 334 and 344 offshore Costa Rica, covering all major lithologies from the incoming- as well as overriding plates. Our main conclusions are as follows:

- Transitions between different fault slip modes, such as aseismic fault slip, shallow slow earthquakes and the emergence of plate boundary ruptures, i.e. the generation of regular earthquakes at the upper limit of the seismogenic zone, can be explained by the presence of these materials in the subduction channel, and their variability in mechanical behavior during progressive subduction.

- Incoming plate carbonates are the only materials showing unstable-slip, that is considered a laboratory analogue for regular earthquakes. Hemipelagics show velocity weakening behavior at low effective normal stress, which might favor rupture propagation towards the trench.

©2018 American Geophysical Union. All Rights Reserved.
• The locking degree of the plate boundary fault does not follow the simple assumption of pore pressure related stabilization, as possible direct effects of pore pressure on the velocity dependence of friction are not considered. In our friction experiments, increases in pore fluid pressure generally result in frictional stabilization, except for carbonate gouge which shows destabilization at $T = 140^\circ$C.

• Linear weakening/hardening trends in RSF data bear a high potential for experimental artifacts and can hardly be assumed as steady state after relatively small amounts of displacement. This, in many cases, would imply unreasonably large drops in friction when transferred to the natural case. Therefore, we argue that the recently proposed mechanism for the emergence of slow earthquakes via slip weakening [Ikari et al., 2013b] needs more careful data evaluation. Nevertheless, our data show systematic variations in slip weakening/hardening rates with implications for slip mode transition in subduction channels, if the mechanism can be approved. Slip-weakening appears to be thermally activated in all materials tested, but requires higher or lower temperatures dependent on sediment type. Incoming plate carbonates consistently show slip-weakening behavior at $T = 70^\circ$C, and in cases already at room temperature. Therefore, they are considered the most likely candidates to trigger shallow slow earthquakes, that in Costa Rica are reported to occur within the exceptionally cool temperature range between $12 - 60^\circ$C [Dixon et al., 2014].

We propose that shallow subduction channel deformation, i.e. from trench to updip limit of seismogenesis within the erosive subduction system at Costa Rica is governed by the mechanical behavior of the material conveyed with the incoming plate. This is in accordance to the new findings that the forearc is built up by previously accreted
sediments. A paleoaccretionary wedge characterized by fault propagation folds reaches presumably 30 - 40 km landward from the trench, whereas the first ≈ 5 km are actually formed by an embryonic active frontal accretionary prism [Bangs et al., 2016; Vannucchi et al., 2017]. The margin evolution is characterized by transient phases of accretion and non-accretion/tectonic erosion. This means, that the subduction channel influx from the incoming Cocos Plate is significant and plays an important role in deformation processes.

Acknowledgments.

This research used data and samples provided by the Integrated Ocean Drilling Program (IODP). M.S. thanks the Shipboard Parties of IODP Expeditions 334 and 344 for their great colleagueship and their commitment aboard DV JOIDES Resolution. R.M.K. greatly appreciated experimental help by M. Sawai. The authors wish to thank Paola Vannucchi and an anonymous reviewer for thorough reviews and insightful suggestions. The experimental data and inversion results are available at https://zenodo.org/record/1297475. Financial support by Deutsche Forschungsgemeinschaft (DFG) through grant STI298/7-1,2 to M.S. and J.H.B. is kindly acknowledged. A.R.N. is supported by the Netherlands Organisation for Scientific Research (NWO) through a VIDI grant (no. 854.12.011) and by the ERC starting grant SEISMIC (no. 335915).
References

©2018 American Geophysical Union. All Rights Reserved.

©2018 American Geophysical Union. All Rights Reserved.

DeMaster, D. J. (1981), The supply and accumulation of silica in the marine environment, *Geochimica et Cosmochimica acta, 45*(10), 1715–1732.

©2018 American Geophysical Union. All Rights Reserved.

Harris, R., A. Sakaguchi, K. Petronotis, A. Baxter, R. Berg, A. Burkett, D. Charpentier, P. Choi, J. anf Diz Ferreiro, M. Hamahashi, Y. Hashimoto, K. Heydolph, L. Jovane, M. Kastner, W. Kurz, S. Kutterolf, Y. Li, A. Malinverno, K. Martin, C. Mil-

Ikari, M. J., A. R. Niemeijer, C. J. Spiers, A. J. Kopf, and D. M. Saffer (2013a), Experimental evidence linking slip instability with seafloor lithology and topography at the
Costa Rica convergent margin, *Geology, 41*(8), 891–894.

©2018 American Geophysical Union. All Rights Reserved.

Vannucchi, P., F. Sage, J. Phipps Morgan, F. Remitti, and J.-Y. Collot (2012), Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer, *Geochemistry, Geophysics, Geosystems*, 13(2).

©2018 American Geophysical Union. All Rights Reserved.
Table 1. Sample compositions from XRD analysis, bernard calcimetry and wet-chemical leaching.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Calcite [wt%]</th>
<th>(^a)Qtz + Fsp [wt%]</th>
<th>Clay total [wt%]</th>
<th>Zeolite [wt%]</th>
<th>Opal [wt%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1414-30X7</td>
<td>> 90</td>
<td><5</td>
<td>traces</td>
<td>traces</td>
<td>4</td>
</tr>
<tr>
<td>1414-20H2</td>
<td>45</td>
<td>50-55</td>
<td>traces</td>
<td>traces</td>
<td>2</td>
</tr>
<tr>
<td>1414-25X4</td>
<td>25</td>
<td>70-75</td>
<td>traces</td>
<td>traces</td>
<td>3</td>
</tr>
<tr>
<td>1414-14H6</td>
<td>20</td>
<td>40-45</td>
<td>30-35</td>
<td><5</td>
<td>3</td>
</tr>
<tr>
<td>1412-2H1</td>
<td>15</td>
<td>40-45</td>
<td>30-35</td>
<td><5</td>
<td>5</td>
</tr>
<tr>
<td>1412-8R6</td>
<td>15</td>
<td>35-40</td>
<td>35-40</td>
<td>traces</td>
<td>6</td>
</tr>
<tr>
<td>1378-24X4</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>1378-42X4</td>
<td>5</td>
<td>50-55</td>
<td>35-40</td>
<td><5</td>
<td>5</td>
</tr>
<tr>
<td>1379-101X5</td>
<td><5</td>
<td>50</td>
<td>35-40</td>
<td><5</td>
<td>4</td>
</tr>
</tbody>
</table>

\(^a\)Qtz = quartz, Fsp = feldspar.
Figure 1. Map, seismic section and lithostratigraphic columns of drilling sites at the CRISP area offshore Costa Rica. Large bathymetric map showing the surface expression of the plate boundary system offshore Osa Peninsula and tectonic overview inset map were compiled using the online map repository GeoMapApp (geomapapp.org). Location of the seismic line 'BGR99-line 7', is indicated by thick black line; red dots and labels represent CRISP drilling sites. Water depths are indicated by color scale. Stratigraphic positions of samples used for mechanical tests are indicated by arrows next to lithostratigraphic columns. Lithostratigraphic units are described in the main text.

©2018 American Geophysical Union. All Rights Reserved.
Figure 2. Photographs of experimental apparatus used in this study. a) Hydrothermal pressure vessel mounted into Instron loading frame with important mechanical components labelled. b) Disassembled two opposing internal pistons with exposed toothed sample contact area. c) Lower internal piston with sample confining rings and prepared simulated fault gouge infill.
Figure 3. Evolution of frictional strength with effective normal stress depending on changes in carbonate content as outlined by grey scale (panels a-d), and temperature (panels e-h). Symbol colors represent different temperatures due to the scheme in the upper right corner. Symbol size represents different pore pressure states as indicated in the upper left corner. For better comparison the corresponding ranges are marked by horizontal lines in each subfigure, combining results for samples originating from either the same tectonic positions (e.g. frontal prism vs. upper/middle slope) and/or depositional realms (e.g. pelagics vs. hemipelagics). Note the extraordinarily wide range of highly calcareous samples.
Figure 4. Rate- and state parameter \((a-b)\). The domain representing potentially unstable velocity- weakening behavior \(((a-b) \leq 0)\) is outlined by grey hatching in all subfigures. Data points in pale colors and dashed symbols represent hand picked values using Eq. 3. Data sets representing combined temperature and pore fluid pressure increases \(((RT/20 \text{ MPa}) \Rightarrow (70 \text{ °C}/60 \text{ MPa}) \Rightarrow (140 \text{ °C}/120 \text{ MPa}))\) are highlighted in respective background colors and hatching (Figure 4a-d). In Figure 4a, only the records related to experiments on calcareous ooze sample 30X-7 are emphasized. Records for all slope sediments are presented together due to their similarity (Figure 4c,d). The range of stick slip occurrence, implying negative values in \((a-b)\) is marked by a side bar.

©2018 American Geophysical Union. All Rights Reserved.
Figure 5. Slip weakening/hardening rate η and critical slip-weakening distance W as a function of up-step load point velocity V. The range of slip weakening behavior ($\eta < 0$) potentially triggering slow slip events is highlighted by a shaded background in subfigures a-d. Symbol size and color are defined below panels e and h respectively. Note that slip-weakening appears to be temperature controlled, especially in clayey hemipelagics (panels b), and most likely occurs in calcareous pelagics (panels a,e). Material from the prism toe region shows the shortest critical slip-weakening distances (panel g).
Figure 6. Dependence of frictional stabilization/destabilization on pore fluid pressure variations. Color coded polygons mark ranges of corresponding data points recorded at identical pore fluid pressure states following the legends depicted in each respective subfigure. Pore fluid pressure related frictional stabilization as indicated by a shift toward larger (a-b) values occurs in the majority of cases, and especially in clayey gouges. Note the frictional destabilizing effect in calcareous ooze gouge at 140 °C.
Figure 7. Evolution of experimental gouge layer thickness with displacement (solid lines, left ordinate), and corresponding slip hardening/weakening rates (symbols, right ordinate) recorded in experiments on pelagic calcareous ooze gouge and hemipelagic silty clay gouge. Color coding refers to the applied experimental conditions and sediment type, respectively. Connected symbols represent respective effective normal stress steps. The red line marks the transition between slip hardening ($\eta > 0$) and slip weakening ($\eta < 0$) behavior. Thinning trends are comparable in all experiments except for calcareous ooze gouge at room temperature, which shows considerably stronger thinning. The starting layer thickness, however, strongly differs between calcareous ooze and silty clay gouge, owed to higher compressibility of clays. There is a positive trend in slip hardening/weakening rate as a function of displacement and effective normal stress.
Slip weakening rate η [mm$^{-1}$]
Layer thickness h [μm]
Displacement [mm]
0.00 0.01 0.02
-0.01

Figure 8. Forward calculation of a velocity step of 1 to 10 μm/s with $a=0.005$, $b=0.002$ and $d_c=0.05$ mm, plus an additional linear weakening of 0.02 per mm, along with inversion results of this forward calculation using 2 state variables and input data to three different amounts of displacement. RSF values from inversion are given in the inset table in a). The model fit to 0.75 mm gives reasonable values for both $(a-b)$ and d_{c2}, whereas model fits to larger displacements result in unrealistic output values.

©2018 American Geophysical Union. All Rights Reserved.