Tectonomorphic evolution of Marie Byrd Land – Implications for Cenozoic rifting activity and onset of West Antarctic glaciation.

Spiegel, Cornelia, Lindow, Julia, Kamp, Peter J.J., Meisel, Ove, Mukasa, Samuel, Lisker, Frank, Kuhn, Gerhard and Gohl, Karsten (2016) Tectonomorphic evolution of Marie Byrd Land – Implications for Cenozoic rifting activity and onset of West Antarctic glaciation. Global and Planetary Change, 145 . pp. 98-115. DOI 10.1016/j.gloplacha.2016.08.013.

[img] Text
Spiegel.pdf - Reprinted Version
Restricted to Registered users only

Download (5Mb)

Supplementary data:

Abstract

Highlights

• First fission track and (U-Th-Sm)/He data from eastern Marie Byrd Land
• First direct dating of Cenozoic WARS activity outside the Ross Sea area
• Structural model kinematically linking areas of extended crust within the WARS
• Data on paleotopographic evolution providing boundary conditions for glaciation

Abstract

The West Antarctic Rift System is one of the largest continental rifts on Earth. Because it is obscured by the West Antarctic Ice Sheet, its evolution is still poorly understood. Here we present the first low-temperature thermochronology data from eastern Marie Byrd Land, an area that stretches ~ 1000 km along the rift system, in order to shed light on its development. Furthermore, we petrographically analysed glacially transported detritus deposited in the marine realm, offshore Marie Byrd Land, to augment the data available from the limited terrestrial exposures. Our data provide information about the subglacial geology, and the tectonic and morphologic history of the rift system. Dominant lithologies of coastal Marie Byrd Land are igneous rocks that intruded (presumably early Paleozoic) low-grade meta-sedimentary rocks. No evidence was found for un-metamorphosed sedimentary rocks exposed beneath the ice. According to the thermochronology data, rifting occurred in two episodes. The earlier occurred between ~ 100 and 60 Ma and led to widespread tectonic denudation and block faulting over large areas of Marie Byrd Land. The later episode started during the Early Oligocene and was confined to western Pine Island Bay area. This Oligocene tectonic activity may be linked kinematically to previously described rift structures reaching into Bellingshausen Sea and beneath Pine Island Glacier, all assumed to be of Cenozoic age. However, our data provide the first direct evidence for Cenozoic tectonic activity along the rift system outside the Ross Sea area. Furthermore, we tentatively suggest that uplift of the Marie Byrd Land dome only started at ~ 20 Ma; that is, nearly 10 Ma later than previously assumed. The Marie Byrd Land dome is the only extensive part of continental West Antarctica elevated above sea level. Since the formation of a continental ice sheet requires a significant area of emergent land, our data, although only based on few samples, imply that extensive glaciation of this part of West Antarctica may have only started since the early Miocene.

Document Type: Article
Keywords: Tectonomorphic evolution, Marie Byrd Land, West Antarctic Rift System, Cenozoic
Refereed: Yes
Open Access Journal?: No
DOI etc.: 10.1016/j.gloplacha.2016.08.013
ISSN: 0921-8181
Projects: Enrichment, SPP 1158
Date Deposited: 02 Nov 2018 07:54
Last Modified: 01 Feb 2019 15:01
URI: http://oceanrep.geomar.de/id/eprint/44598

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...