Exploring the variability of argon loss in Apollo 17 impact melt rock 77135 using high-spatial resolution 40 Ar/39 Ar geochronology.

Mercer, Cameron M. , Hodges, Kip V., Jolliff, Bradley L., Van Soest, Matthijs C., Wartho, Jo-Anne and Weirich, John R. (2019) Exploring the variability of argon loss in Apollo 17 impact melt rock 77135 using high-spatial resolution 40 Ar/39 Ar geochronology. Meteoritics & Planetary Science, 54 (4). pp. 721-739. DOI 10.1111/maps.13240.

[img] Text
Mercer_et_al-2019-Meteoritics_&_Planetary_Science.pdf - Published Version
Restricted to Registered users only

Download (1005Kb) | Contact

Supplementary data:


40Ar/39Ar incremental heating experiments on whole‐rock lunar samples commonly provide evidence of varying degrees of radiogenic 40Ar (40Ar*) loss. However, these experiments provide limited information about whether or not 40Ar* is preferentially lost from specific glasses, minerals, or polyphase domains. Ultraviolet laser ablation microprobe (UVLAMP) 40Ar/39Ar dating and electron probe microanalysis of mineral clasts and polyphase melt assemblages in Apollo 17 poikilitic impact melt rock 77135 show evidence of geochemical controls on 40Ar/39Ar dates. Potassium‐rich glass and K‐feldspar in the mesostasis are the dominant sources for Ar released during low‐temperature steps of published 40Ar/39Ar release spectra for this rock, while pyroxene oikocrysts with enclosed plagioclase chadacrysts contribute Ar predominantly to intermediate‐ to high‐temperature steps. Additionally, UVLAMP analysis of a mm‐scale plagioclase clast demonstrates the potential to use stranded 40Ar* diffusive loss profiles to constrain the thermal evolution of lunar impact melt deposits and indicates that the melt component of 77135 cooled quickly. While some submillimeter clasts of plagioclase are distinctly older than the melt, other small clasts yield dates younger than the oldest melt components in 77135, plausibly due to subgrain fast diffusion pathways and/or 40Ar* loss during brief episodes of reheating at high temperatures. Our data suggest that integrated petrologic and microanalytical geochronologic studies are necessary complements to bulk sample geochronologic studies in order to fully evaluate competing models for the impactor flux during the first billion years of the Moon's evolution.

Document Type: Article
Dewey Decimal Classification: 500 Natural Sciences and Mathematics > 550 Earth sciences & geology
Research affiliation: OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-MUHS
Refereed: Yes
Open Access Journal?: No
DOI etc.: 10.1111/maps.13240
ISSN: 1086-9379
Date Deposited: 16 Jan 2019 14:10
Last Modified: 06 Feb 2020 09:16
URI: http://oceanrep.geomar.de/id/eprint/45405

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...