Isolation and characterization of native probiotics for fish farming.

Wanka, Konrad M., Damerau, Thilo, Costas, Benjamin, Krueger, Angela, Schulz, Carsten and Wuertz, Sven (2018) Isolation and characterization of native probiotics for fish farming. BMC Microbiology, 18 (1). DOI 10.1186/s12866-018-1260-2.

Full text not available from this repository.

Supplementary data:


Innovations in fish nutrition act as drivers for the sustainable development of the rapidly expanding aquaculture sector. Probiotic dietary supplements are able to improve health and nutrition of livestock, but respective bacteria have mainly been isolated from terrestrial, warm-blooded hosts, limiting an efficient application in fish. Native probiotics adapted to the gastrointestinal tract of the respective fish species will establish within the original host more efficiently.
Here, 248 autochthonous isolates were cultured from the digestive system of three temperate flatfish species. Upon 16S rRNA gene sequencing of 195 isolates, 89.7% (n = 175) Gram-negatives belonging to the Alpha- (1.0%), Beta- (4.1%) and Gammaproteobacteria (84.6%) were identified. Candidate probiotics were further characterized using in vitro assays addressing 1) inhibition of pathogens, 2) degradation of plant derived anti-nutrient (saponin) and 3) the content of essential fatty acids (FA) and their precursors. Twelve isolates revealed an inhibition towards the common fish pathogen Tenacibaculum maritimum, seven were able to metabolize saponin as sole carbon and energy source and two isolates 012 Psychrobacter sp. and 047 Paracoccus sp. revealed remarkably high contents of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Furthermore, a rapid and cost-effective method to coat feed pellets revealed high viability of the supplemented probiotics over 54 d of storage at 4°C.
Here, a strategy for the isolation and characterization of native probiotic candidates is presented that can easily be adapted to other farmed fish species. The simple coating procedure assures viability of probiotics and can thus be applied for the evaluation of probiotic candidates in the future.

Document Type: Article
Keywords: Aquaculture Probiotic supplementation Saponin metabolization PUFA Psychrobacter Acinetobacter Oral administration Diet preparation Tenacibaculum maritimum
Research affiliation: Kiel University
Kiel University > Kiel Marine Science
OceanRep > The Future Ocean - Cluster of Excellence
Refereed: Yes
Open Access Journal?: Yes
DOI etc.: 10.1186/s12866-018-1260-2
ISSN: 1471-2180
Projects: Future Ocean
Date Deposited: 30 Jan 2019 11:57
Last Modified: 24 Sep 2019 00:04

Actions (login required)

View Item View Item