Exploring the Drivers of Global and Local Sea‐Level Change over the 21st Century and Beyond.

Palmer, M. D. , Gregory, J. M. , Bagge, M. , Calvert, D., Hagedoorn, J. M., Howard, T. , Klemann, V. , Lowe, J. A., Roberts, C. D. , Slangen, A. B. A. and Spada, G. (In Press / Accepted) Exploring the Drivers of Global and Local Sea‐Level Change over the 21st Century and Beyond. Open Access Earth's Future . Art.Nr. e2019EF001413. DOI 10.1029/2019EF001413.

[img]
Preview
Text
2019EF001413.pdf - Accepted Version
Available under License Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0.

Download (3474Kb) | Preview

Supplementary data:

Abstract

We present a new set of global and local sea‐level projections at example tide gauge locations under the RCP2.6, RCP4.5 and RCP8.5 emissions scenarios. Compared to the CMIP5‐based sea‐level projections presented in IPCC AR5, we introduce a number of methodological innovations, including: (i) more comprehensive treatment of uncertainties; (ii) direct traceability between global and local projections; (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea‐level variability, different emissions scenarios and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea‐level component and consider the dependence on geographic location, time horizon and emissions scenario. Our analysis highlights the importance of variability for sea‐level change in the coming decades and the potential value of annual‐to‐decadal predictions of local sea‐level change. Projections to 2300 show a substantial degree of committed sea‐level rise under all emissions scenarios considered and highlights the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large (> 50%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post‐2100, we see a substantial differences in the breakdown of model variance as a function of location, timescale and emissions scenario.

Document Type: Article
Keywords: sea level projections; climate change; tide gauge observations; RCP scenarios; CMIP5 models
Refereed: Yes
Open Access Journal?: Yes
DOI etc.: 10.1029/2019EF001413
ISSN: 2328-4277
Projects: PalMod
Date Deposited: 09 Jul 2020 10:00
Last Modified: 09 Jul 2020 10:00
URI: http://oceanrep.geomar.de/id/eprint/50096

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...