Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network.

Telszewski, A. Chazottes, Schuster, U., Watson, A. J., Moulin, C., Bakker, D. C. E., González-Dávila, M., Johannessen, T., Körtzinger, Arne , Lüger, H., Olsen, A., Omar, A., Padin, X. A., Ríos, A. F., Steinhoff, Tobias, Santana-Casiano, M., Wallace, Douglas W.R. and Wanninkhof, R. (2009) Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network. Open Access Biogeosciences (BG), 6 (8). pp. 1405-1421. DOI 10.5194/bg-6-1405-2009.

[img]
Preview
Text
987_Telszewski_2009_EstimatingTheMonthlyPco2Distribution_Artzeit_pubid13208.pdf - Published Version

Download (28Mb)

Supplementary data:

Abstract

Here we present monthly, basin-wide maps of the partial pressure of carbon dioxide (pCO2) for the North Atlantic on a 1° latitude by 1° longitude grid for years 2004 through 2006 inclusive. The maps have been computed using a neural network technique which reconstructs the non-linear relationships between three biogeochemical parameters and marine pCO2. A self organizing map (SOM) neural network has been trained using 389 000 triplets of the SeaWiFS-MODIS chlorophyll-a concentration, the NCEP/NCAR reanalysis sea surface temperature, and the FOAM mixed layer depth. The trained SOM was labelled with 137 000 underway pCO2 measurements collected in situ during 2004, 2005 and 2006 in the North Atlantic, spanning the range of 208 to 437 μatm. The root mean square error (RMSE) of the neural network fit to the data is 11.6 μatm, which equals to just above 3 per cent of an average pCO2 value in the in situ dataset. The seasonal pCO2 cycle as well as estimates of the interannual variability in the major biogeochemical provinces are presented and discussed. High resolution combined with basin-wide coverage makes the maps a useful tool for several applications such as the monitoring of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine CO2 cycles in future model predictions. The method itself is a valuable alternative to traditional statistical modelling techniques used in geosciences.

Document Type: Article
Research affiliation: OceanRep > The Future Ocean - Cluster of Excellence
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography
Refereed: Yes
Open Access Journal?: Yes
DOI etc.: 10.5194/bg-6-1405-2009
ISSN: 1726-4170
Projects: Future Ocean
Date Deposited: 09 Feb 2010 15:48
Last Modified: 06 Jul 2012 14:54
URI: http://oceanrep.geomar.de/id/eprint/7369

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...