Dynamics, estimation and impact of South Atlantic inter-ocean exchange.

De Ruijter, W.P.M., Biastoch, Arne , Drijhout, S.S., Lutjeharms, J.R.E., Matano, R., Pichevin, T., van Leeuwen, P.J. and Weijer, W. (1999) Dynamics, estimation and impact of South Atlantic inter-ocean exchange. Open Access Journal of Geophysical Research: Oceans, 104 (C9). pp. 20885-20910. DOI 10.1029/1998JC900099.

[thumbnail of DeRuijter-1999.pdf]
Preview
Text
DeRuijter-1999.pdf - Published Version
Available under License Creative Commons: Attribution 4.0.

Download (2MB) | Preview

Supplementary data:

Abstract

Interocean exchange of heat and salt around South Africa is thought to be a key link in the maintenance of the global overturning circulation of the ocean. It takes place at the Agulhas Retroflection, largely by the intermittent shedding of enormous rings that penetrate into the South Atlantic Ocean. This makes it extremely hard to estimate the inter ocean fluxes. Estimates of direct Agulhas leakage from hydrographic and tracer data range between 2 and 10 Sv (1 Sv = 106 m3 s−1). The average ring shedding frequency, determined from satellite information, is approximately six rings per year. Their associated interocean volume transport is between 0.5 and 1.5 Sv per ring. A number of Agulhas rings have been observed to cross the South Atlantic. They decay exponentially to less than half their initial size (measured by their available potential energy) within 1000 km from the shedding region. Consequently, most of their properties mix into the surroundings of the Benguela region, probably feeding directly into the upper (warm) limb of the global thermohaline circulation. The most recent observations suggest that in the present situation Agulhas water and Antarctic Intermediate Water are about equally important sources for the Benguela Current. Variations in the strength of these may lead to anomalous stratification and stability of the Atlantic at decadal and longer timescales. Modeling studies suggest that the Indian-Atlantic interocean exchange is strongly related to the structure of the wind field over the South Indian Ocean. This leads in the mean to a subtropical supergyre wrapping around the subtropical gyres of the South Indian and Atlantic Oceans. However, local dynamical processes in the highly nonlinear regime around South Africa play a crucial role in inhibiting the connection between the two oceans. The regional bottom topography also seems to play an important role in locking the Agulhas Currents' retroflection. State-of-the-art global and regional “eddy-permitting” models show a reasonably realistic representation of the mean Agulhas system; but the mesoscale variability and the local geometrical and topographic features that determine largely the interocean fluxes still need considerable improvement. In this article we present a review of the above mentioned aspects of the interocean exchange around South Africa: the estimation of the fluxes into the South Atlantic from different types of observations, our present level of understanding of the exchanges dynamics and forcing, its representation in state-of-the-art models, and, finally, the impact of the Indian-Atlantic fluxes on regional and global scale both within the Atlantic Ocean and in interaction with the overlying atmosphere.

Document Type: Article
Keywords: General Circulation; Seafloor Morphology, Geology, and Geophysics
Research affiliation: OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-TM Theory and Modeling
Refereed: Yes
Open Access Journal?: No
Publisher: AGU (American Geophysical Union)
Projects: WOCE
Date Deposited: 18 Feb 2008 17:24
Last Modified: 24 Nov 2017 12:30
URI: https://oceanrep.geomar.de/id/eprint/7455

Actions (login required)

View Item View Item