Energetics of mixing in a stratified basin without tides

Processes
- **BaTRE**
- Combined approach of:
 - long time measurements (Temperature, Salinity, Currents)
 - tracer release (~SF$_5$CF$_3$)
 - microstructure measurements (MSS-90)

Hydrography
- CTD cast 2 weeks after the tracer release
- Inflow just before the tracer release

Budget Methods
- Tracer Analysis
 - SF$_5$CF$_3$ Tracer Injection
 - First sole injection of SF$_5$CF$_3$

Available Energy
- Near inertial wave energy flux
 - Phase shift
 - Energy flux calculation via the phase velocity

Vertical Energy Flux of Internal Waves
- Eigenvectors of the 1st EOF mode (inertial)
 - 1st mode of EOF explains 73% of the sub inertial motions
- Sub inertial motions
 - primarily inertial/near inertial internal waves
 - 3 day period are coherent and counter clockwise
 - excludes Baltic Sea eddies (Beddies)
 - possibly Topographic waves (period fits ~ 72 hours) but the velocity should show two counter clockwise rotating gyres, the role of stratification is unclear
- Ideas about the nature of motions
 - coherence of motions larger than the internal Rossby radius ~ 5 km
 - excludes Kelvin waves (diameter of GB >> 5 km)
 - excludes Baltic Sea eddies (Beddies)

Empirical Orthogonal Functions
- Eigenvectors of the 1st EOF mode (sub inertial)
 - 1st mode of EOF explains 73% of the sub inertial motions

Tracer Analysis
- **Rotary spectrum**
 - Inertial ($T < 1$ day)
 - sub inertial (15 days $> T > 1$ day)
 - counter clockwise

Available Energy
- **Near inertial wave energy flux**
 - Measurable phase shift
 - Near inertial internal waves ($T > 1$ day)
 - well known, broadband peak around the inertial frequency
 - alignment of energy frequency via function G (Eq. (36)) and the well known phase shift
 - Energy is expressed via the dissipation rate ($\epsilon = G E_{\Delta f}$) (Eq. (7)), this can be compared with the budget methods and the microstructure measurements
 - $F_c = c E_{\Delta f}$ (Eq. (5))

Motivation/Baltic Tracer Release Experiment
- Gotland Basin (GB)
 - Largest basin in the Baltic
- Natural laboratory to study
 - wind induced mixing (no tides)
 - barotropic contribution to mixing
 - boundary/interior mixing
- **BaTRE**
 - largest basin in the Baltic
 - wind induced mixing (no tides)
 - barotropic contribution to mixing
 - largest Basin in the Baltic
 - near inertial wave contribution to mixing

Budget Methods
- **Tracer Analysis**
 - SF$_5$CF$_3$ Tracer Injection
 - First sole injection of SF$_5$CF$_3$

Available Energy
- **Near inertial wave energy flux**
 - Measurable phase shift
 - Near inertial internal waves ($T > 1$ day)
 - well known, broadband peak around the inertial frequency
 - alignment of energy frequency via function G (Eq. (36)) and the well known phase shift
 - Energy is expressed via the dissipation rate ($\epsilon = G E_{\Delta f}$) (Eq. (7)), this can be compared with the budget methods and the microstructure measurements
 - $F_c = c E_{\Delta f}$ (Eq. (5))

Eigenvectors of the 1st EOF mode (sub inertial)
- 1st mode of EOF explains 73% of the sub inertial motions

Empirical Orthogonal Functions
- Eigenvectors of the 1st EOF mode (sub inertial)
 - 1st mode of EOF explains 73% of the sub inertial motions

Tracer Analysis
- **Rotary spectrum**
 - Inertial ($T < 1$ day)
 - sub inertial (15 days $> T > 1$ day)
 - counter clockwise

Available Energy
- **Near inertial wave energy flux**
 - Measurable phase shift
 - Near inertial internal waves ($T > 1$ day)
 - well known, broadband peak around the inertial frequency
 - alignment of energy frequency via function G (Eq. (36)) and the well known phase shift
 - Energy is expressed via the dissipation rate ($\epsilon = G E_{\Delta f}$) (Eq. (7)), this can be compared with the budget methods and the microstructure measurements
 - $F_c = c E_{\Delta f}$ (Eq. (5))

Seasonality of mixing
- Seasonality of momentum input through wind
- Same seasonality in the kinetic energy within the basin
- Diffusivity (Eq. (1), (2)) changes one order of magnitude between mixing periods, storms events are resolved
- Volume averaged dissipation rates (Eq. (3), (4)) are in the order of 10^{-6} W kg^{-1}, the noise level of the microstructure probe, pointing to boundary mixing, where higher dissipations were measured

Effects of mixing: Buoyancy change of buoyancy over time
-瑞季性变化的改变
-瑞季性变化的改变
-瑞季性变化的改变
-瑞季性变化的改变

Eigenvectors of the 1st EOF mode (sub inertial)
- 1st mode of EOF explains 73% of the sub inertial motions

Tracer Analysis
- **Rotary spectrum**
 - Inertial ($T < 1$ day)
 - sub inertial (15 days $> T > 1$ day)
 - counter clockwise

Available Energy
- **Near inertial wave energy flux**
 - Measurable phase shift
 - Near inertial internal waves ($T > 1$ day)
 - well known, broadband peak around the inertial frequency
 - alignment of energy frequency via function G (Eq. (36)) and the well known phase shift
 - Energy is expressed via the dissipation rate ($\epsilon = G E_{\Delta f}$) (Eq. (7)), this can be compared with the budget methods and the microstructure measurements
 - $F_c = c E_{\Delta f}$ (Eq. (5))

Motivation/Baltic Tracer Release Experiment
- Gotland Basin (GB)
 - Largest basin in the Baltic
- Natural laboratory to study
 - wind induced mixing (no tides)
 - barotropic contribution to mixing
 - near inertial wave contribution to mixing
 - boundary/interior mixing
 - largest Basin in the Baltic
 - wind induced mixing (no tides)
 - barotropic contribution to mixing

Budget Methods
- **Tracer Analysis**
 - SF$_5$CF$_3$ Tracer Injection
 - First sole injection of SF$_5$CF$_3$

Available Energy
- **Near inertial wave energy flux**
 - Measurable phase shift
 - Near inertial internal waves ($T > 1$ day)
 - well known, broadband peak around the inertial frequency
 - alignment of energy frequency via function G (Eq. (36)) and the well known phase shift
 - Energy is expressed via the dissipation rate ($\epsilon = G E_{\Delta f}$) (Eq. (7)), this can be compared with the budget methods and the microstructure measurements
 - $F_c = c E_{\Delta f}$ (Eq. (5))