Modeling the marine aragonite cycle: changes under rising carbon dioxide and its role in shallow water CaCO3 dissolution.

Gangsto, R., Gehlen, M., Schneider, Birgit, Bopp, L., Aumont, O. and Joos, F. (2008) Modeling the marine aragonite cycle: changes under rising carbon dioxide and its role in shallow water CaCO3 dissolution. Open Access Biogeosciences (BG), 5 (4). pp. 1057-1072. DOI 10.5194/bg-5-1057-2008.

Full text not available from this repository.

Supplementary data:

Abstract

The marine aragonite cycle has been included in the global biogeochemical model PISCES to study the role of aragonite in shallow water CaCO3 dissolution. Aragonite production is parameterized as a function of mesozooplankton biomass and aragonite saturation state of ambient waters. Observation-based estimates of marine carbonate production and dissolution are well reproduced by the model and about 60% of the combined CaCO3 water column dissolution from aragonite and calcite is simulated above 2000 m. In contrast, a calcite-only version yields a much smaller fraction. This suggests that the aragonite cycle should be included in models for a realistic representation of CaCO3 dissolution and alkalinity. For the SRES A2 CO2 scenario, production rates of aragonite are projected to notably decrease after 2050. By the end of this century, global aragonite production is reduced by 29% and total CaCO3 production by 19% relative to pre-industrial. Geographically, the effect from increasing atmospheric CO2, and the subsequent reduction in saturation state, is largest in the subpolar and polar areas where the modeled aragonite production is projected to decrease by 65% until 2100.

Document Type: Article
Research affiliation: Kiel University
OceanRep > The Future Ocean - Cluster of Excellence
Refereed: Yes
Open Access Journal?: Yes
DOI etc.: 10.5194/bg-5-1057-2008
ISSN: 1726-4170
Projects: Future Ocean
Date Deposited: 13 Oct 2010 12:06
Last Modified: 23 Sep 2019 23:57
URI: http://oceanrep.geomar.de/id/eprint/9014

Actions (login required)

View Item View Item