Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering.

Aswathy, N., Boucher, O., Quaas, Martin, Niemeier, U., Muri, H., Muelmenstaedt, J. and Quaas, J. (2015) Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering. Open Access Atmospheric Chemistry and Physics, 15 (16). pp. 9593-9610. DOI 10.5194/acp-15-9593-2015.

Full text not available from this repository.

Supplementary data:

Abstract

Simulations from a multi-model ensemble for the RCP4.5 climate change scenario for the 21st century, and for two solar radiation management (SRM) schemes (stratospheric sulfate injection (G3), SULF and marine cloud brightening by sea salt emission SALT) have been analysed in terms of changes in the mean and extremes of surface air temperature and precipitation. The climate engineering and termination periods are investigated. During the climate engineering period, both schemes, as intended, offset temperature increases by about 60% globally, but are more effective in the low latitudes and exhibit some residual warming in the Arctic (especially in the case of SALT which is only applied in the low latitudes). In both climate engineering scenarios, extreme temperature changes are similar to the mean temperature changes over much of the globe. The exceptions are the mid-and high latitudes in the Northern Hemisphere, where high temperatures (90th percentile of the distribution) of the climate engineering period compared to RCP4.5 control period rise less than the mean, and cold temperatures (10th percentile), much more than the mean. This aspect of the SRM schemes is also reflected in simulated reduction in the frost day frequency of occurrence for both schemes. However, summer day frequency of occurrence increases less in the SALT experiment than the SULF experiment, especially over the tropics. Precipitation extremes in the two SRM scenarios act differently - the SULF experiment more effectively mitigates extreme precipitation increases over land compared to the SALT experiment. A reduction in dry spell occurrence over land is observed in the SALT experiment. The SULF experiment has a slight increase in the length of dry spells. A strong termination effect is found for the two climate engineering schemes, with large temperature increases especially in the Arctic. Globally, SULF is more effective in reducing extreme temperature increases over land than SALT. Extreme precipitation increases over land is also more reduced in SULF than the SALT experiment. However, globally SALT decreases the frequency of dry spell length and reduces the occurrence of hot days compared to SULF.

Document Type: Article
Additional Information: Times Cited: 0
Research affiliation: OceanRep > The Future Ocean - Cluster of Excellence > FO-R05
OceanRep > The Future Ocean - Cluster of Excellence > FO-R03
OceanRep > The Future Ocean - Cluster of Excellence > FO-R11
Kiel University
Kiel University > Kiel Marine Science
OceanRep > The Future Ocean - Cluster of Excellence
OceanRep > The Future Ocean - Cluster of Excellence > FO-R06
OceanRep > The Future Ocean - Cluster of Excellence > FO-R02
Refereed: Yes
Open Access Journal?: No
Publisher: Copernicus Publications
Projects: Future Ocean
Date Deposited: 20 Oct 2016 11:03
Last Modified: 23 Sep 2019 21:46
URI: https://oceanrep.geomar.de/id/eprint/32400

Actions (login required)

View Item View Item