Phase Equilibria of the CH4-CO2 Binary and the CH4-CO2-H2O Ternary Mixtures in the Presence of a CO2-Rich Liquid Phase.

Legoix, Ludovic Nicolas, Ruffine, Livio, Donval, Jean-Pierre and Haeckel, Matthias (2017) Phase Equilibria of the CH4-CO2 Binary and the CH4-CO2-H2O Ternary Mixtures in the Presence of a CO2-Rich Liquid Phase. Open Access Energies, 10 (12, Art. No. 2034). DOI 10.3390/en10122034.

[thumbnail of energies-10-02034-v2.pdf]
Preview
Text
energies-10-02034-v2.pdf - Published Version
Available under License Creative Commons: Attribution 4.0.

Download (1MB) | Preview

Supplementary data:

Abstract

The knowledge of the phase behavior of carbon dioxide (CO2)-rich mixtures is a key factor to understand the chemistry and migration of natural volcanic CO2 seeps in the marine environment, as well as to develop engineering processes for CO2 sequestration coupled to methane (CH4) production from gas hydrate deposits. In both cases, it is important to gain insights into the interactions of the CO2-rich phase—liquid or gas—with the aqueous medium (H2O) in the pore space below the seafloor or in the ocean. Thus, the CH4-CO2 binary and CH4-CO2-H2O ternary mixtures were investigated at relevant pressure and temperature conditions. The solubility of CH4 in liquid CO2 (vapor-liquid equilibrium) was determined in laboratory experiments and then modelled with the Soave–Redlich–Kwong equation of state (EoS) consisting of an optimized binary interaction parameter kij(CH4-CO2) = 1.32 × 10−3 × T − 0.251 describing the non-ideality of the mixture. The hydrate-liquid-liquid equilibrium (HLLE) was measured in addition to the composition of the CO2-rich fluid phase in the presence of H2O. In contrast to the behavior in the presence of vapor, gas hydrates become more stable when increasing the CH4 content, and the relative proportion of CH4 to CO2 decreases in the CO2-rich phase after gas hydrate formation.

Document Type: Article
Keywords: gas hydrate; CH4; CO2-rich mixtures; phase equilibria; Soave–Redlich–Kwong (SRK) cubic equation of state (EoS)
Research affiliation: OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-MG Marine Geosystems
Refereed: Yes
Open Access Journal?: Yes
Publisher: MDPI
Projects: SUGAR, Hydrate as Geohazards
Date Deposited: 22 Jan 2018 08:32
Last Modified: 06 Feb 2020 09:03
URI: https://oceanrep.geomar.de/id/eprint/41661

Actions (login required)

View Item View Item