Comparison of hybrid schemes for the combination of shallow approximations in numerical simulations of the Antarctic Ice Sheet.

Bernales, Jorge, Rogozhina, Irina, Greve, Ralf and Thomas, Maik (2017) Comparison of hybrid schemes for the combination of shallow approximations in numerical simulations of the Antarctic Ice Sheet. Open Access The Cryosphere, 11 (1). pp. 247-265. DOI 10.5194/tc-11-247-2017.

[thumbnail of tc-11-247-2017.pdf]
Preview
Text
tc-11-247-2017.pdf - Published Version
Available under License Creative Commons: Attribution 4.0.

Download (9MB) | Preview
[thumbnail of tc-11-247-2017-supplement.pdf]
Preview
Text
tc-11-247-2017-supplement.pdf - Supplemental Material
Available under License Creative Commons: Attribution 4.0.

Download (1MB) | Preview

Supplementary data:

Abstract

The shallow ice approximation (SIA) is commonly used in ice-sheet models to simplify the force balance equations within the ice. However, the SIA cannot adequately reproduce the dynamics of the fast flowing ice streams usually found at the margins of ice sheets. To overcome this limitation, recent studies have introduced heuristic hybrid combinations of the SIA and the shelfy stream approximation. Here, we implement four different hybrid schemes into a model of the Antarctic Ice Sheet in order to compare their performance under present-day conditions. For each scheme, the model is calibrated using an iterative technique to infer the spatial variability in basal sliding parameters. Model results are validated against topographic and velocity data. Our analysis shows that the iterative technique compensates for the differences between the schemes, producing similar ice-sheet configurations through quantitatively different results of the sliding coefficient calibration. Despite this we observe a robust agreement in the reconstructed patterns of basal sliding parameters. We exchange the calibrated sliding parameter distributions between the schemes to demonstrate that the results of the model calibration cannot be straightforwardly transferred to models based on different approximations of ice dynamics. However, easily adaptable calibration techniques for the potential distribution of basal sliding coefficients can be implemented into ice models to overcome such incompatibility, as shown in this study

Document Type: Article
Refereed: Yes
Open Access Journal?: Yes
Publisher: Copernicus Publications (EGU)
Related URLs:
Projects: PalMod
Date Deposited: 03 Sep 2018 09:51
Last Modified: 17 Dec 2018 08:25
URI: https://oceanrep.geomar.de/id/eprint/44111

Actions (login required)

View Item View Item