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Abstract 

 

Reconstructions of the spatial pattern of recent multi-decadal sea level trends in the Indian 

Ocean (IO) indicate a zonally-extended band in the southern tropics where sea level has 

substantially fallen between the 1960s and 1990s; the decline is consistent with the observed 

subsurface cooling associated with a shoaling thermocline in this region. Here the origin and 

spatio-temporal characteristics of these trends are elucidated by a sequence of ocean model 

simulations. Whereas interannual variability in the southwestern tropical IO appears mainly 

governed by IO atmospheric forcing, longer term changes in the south tropical IO involve a 

strong contribution from the western Pacific via wave transmission of thermocline anomalies 

through the Indonesian Archipelago, and their subsequent westward propagation by baroclinic 

Rossby waves. The late 20th-century IO subsurface cooling trend reversed in the 1990s, 

reflecting the major regime shift in the tropical Pacific easterlies associated with the Pacific 

Decadal Oscillation.

1 
 

mailto:fschwarzkopf@ifm-geomar.de


1. Introduction   

The global ocean is warming, and sea level is rising, in response to anthropogenic changes in 

surface heating [Domingues et al., 2008].  Trends in upper ocean heat content during the past 

50 years are, however, spatially highly inhomogeneous, reflecting strong effects of oceanic 

heat redistribution due to changes in ocean circulation [Doney et al., 2007]. A prominent 

large-scale pattern of subsurface cooling from 1960 to 1999 around depths of 100-200 m has 

been observed in the tropical IO, associated with a shoaling of isopycnals along the 

thermocline ridge around 10°S [Han et al, 2006; Alory et al., 2007].  Corresponding to the 

decrease in heat content in this zonal band, recent studies of ocean reanalysis products have 

identified a distinct pattern of multi-decadal sea level decrease during the late 20th century 

[Han et al., 2010; Timmermann et al., 2010]. 

Understanding the causes of theses regional trend patterns is of crucial importance for 

projections of future ocean and climate conditions. The inhomogeneous changes in IO upper 

ocean heat content and the associated spatial modulation in tropical sea surface warming 

[Trenary and Han, 2008; Alory and Meyers, 2009] are likely to influence natural modes of 

variability and to affect regional climate conditions in IO-rim countries [Ummenhofer et al., 

2009; England et al., 2006]. The corresponding sea level decrease in the south tropical IO 

more than offset the effect of global anthropogenic sea level rise during the last decades; 

however, projections of future trends, extremely important for various low-lying tropical 

islands and coastal areas are controversial, ranging from “little or no rise” [Han et al., 2010] 

to an acceleration of the global mean rise in this area [Timmermann et al., 2010]. 

Several mechanisms have been invoked to explain the subsurface cooling in the south 

tropical IO. Simulations with idealized 2-layer models [Han et al., 2006] and an ocean general 

circulation model [Trenary and Han, 2008] attributed the shoaling of the thermocline to 

anomalous upward Ekman pumping velocities driven by wind stress changes over the IO. In 

contrast, Alory et al. [2007] proposed an oceanic teleconnection between the tropical Pacific 
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and Indian Oceans via wave processes through the Indonesian Archipelago: noting that the IO 

cooling trend occurred along the off-equatorial Rossby wave pathway in the latitude range of 

the Indonesian Throughflow (ITF), they suggested an association with the observed multi-

decadal weakening of the Pacific trade winds in the late twentieth century [Vecchi et al., 

2006], through a shoaling of the thermocline in the western tropical Pacific [Williams and 

Grottoli, 2010] and a weakening of the ITF [Wainwright et al. 2008]. The significance of this 

oceanic teleconnection for decadal variability in the eastern subtropical IO has been 

documented in studies of the century-long sea level record at Fremantle, Western Australia 

[Feng et al., 2004]. For the trends in the interior tropical IO, some indications for a Pacific 

contribution had been noted in earlier ocean models [Reason et al. 1996] and in 20th century 

climate model experiments [Cai et al., 2008], but its significance and spatio-temporal 

manifestation are much less clear. In this study the relative contribution of local (IO) vs. 

remote (Pacific) atmospheric forcing to the (multi-)decadal changes in the tropical IO heat 

content and sea level is investigated by a sequence of experiments with a global ocean general 

circulation model. 

 

2. Model Experiments 

The simulations build on various global implementations of the ocean/sea-ice numerical 

NEMO framework [Madec, 2008], developed in the European DRAKKAR collaboration 

[Barnier et al., 2007].  The basic experiment (REF) is a 0.5°-grid hindcast simulation of the 

ocean’s response to atmospheric forcing in 1958-2004 (preceded by a 20-year spin-up), given 

by the formulations and refined atmospheric reanalysis products developed by Large and 

Yeager [2004] that represent the basis of the Co-ordinated Ocean Reference Experiments 

(COREs) proposed by Griffies et al. [2009]. A companion eddy-permitting version (REF025, 

using a 0.25°-grid) showed relatively minor effects of model resolution on the evolution of 
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heat content and sea level in the Indo-Pacific. Results from REF025 are therefore deferred to 

the supplementary material. 

The identification of the causes of IO decadal variability is aided by two experiments 

with artificial perturbations in the forcing (Fig. S5). In PAC, the world ocean is subject to 

climatological, ‘normal year’ forcing, except for the Pacific north of 50°S, where the same 

interannual forcing is used as in REF. In IND, interannual forcing is applied only to the IO 

north of 25°S. In order to separate atmospherically-forced ocean variability from spurious 

model drift, REF was complemented by a simulation (CLIM) over the same time span with 

climatological forcing everywhere; the trend of this experiment was subtracted from the 

interannually-forced cases prior to further analysis. For calculation of model sea surface 

height (SSH) fields, we followed previous studies [e.g., Wunsch et al., 2007] and subtracted 

the time-varying global-mean SSH; the adjusted fields thus represent regional SSH anomalies 

due to ocean dynamics. 

 

3.  Interannual variability and multi-decadal trend of sea level and heat content 

A manifestation of upper ocean heat content variability in the tropical Indo-Pacific is given by 

the patterns of sea level change provided by satellite altimetry data since 1993 [Cazenave and 

Nerem, 2004]. During the second half of the 1990s, the southwestern Pacific and eastern IO 

exhibited the strongest sea level rise in the world ocean (Fig. 1). The hindcast simulation REF 

(Fig. 1a) reproduces the spatial pattern of the observed trend during this period (Fig. S1a); it 

also captures the large-scale reversal in the decadal tendencies near the end of the 20th century 

noted by Lee and McPhaden [2008]. Time series of SSH anomalies follow the altimeter 

records (Figs.1c,d,e) and emphasize the close correspondence between regional sea level and 

upper ocean heat content variability; they also reproduce the long term tide gauge record at 

Fremantle [cf., Feng et al., 2004] (Fig. 1f).  

4 
 



Although regional sea level is dominated by strong interannual-decadal variability (in 

some areas exceeding 10 cm in a few years) related to El Niño/Southern Oscillation (ENSO) 

[e.g. Behera and Yamagata, 2010], the model simulation also suggests a pronounced, basin-

scale pattern of change on multi-decadal time scales (Fig. 1b): sea level rose during 1960-

1999 by 2-3 cm/decade in the subtropical South Pacific and by 1-2 cm/decade in the 

subtropical South IO; it fell in the western tropical Pacific (by up to 8cm/decade), off western 

Australia and in the tropical IO, with the strongest decline in the IO occurring along ~10°S (2-

3 cm/decade). The spatial pattern and magnitude of the simulated trend in the tropical IO 

compare well with recent ocean reanalyses [Timmermann et al., 2010; Han et al., 2010]. As 

discussed in these studies (and shown in Fig. 1c,d,e), these sea level trends are associated with 

upper ocean warming (cooling) trends related to a deepening (shoaling) of the thermocline. 

 

4. Causes of sub-surface cooling in the south tropical Indian Ocean 

The vertical structure of heating and cooling in the IO (Fig. 2) can be compared with the 

linear trend of zonally-averaged temperature obtained from historical temperature profiles [cf., 

Alory et al., 2007]. The overall pattern in REF (Fig. 2a) matches the observed trend: a general 

surface warming, a wedge of deep warming penetrating to ~800 m near 40°S-45°S, and a 

prominent subsurface cooling trend in the tropical thermocline, with strongest magnitude 

between 100 m and 300 m near 7°-15°S. As in the observational analysis, the subsurface 

signals can be accounted for by a shift of isopycnals (Fig. S2a,b): the deep warming to a 

southward expansion of the subtropical gyre and the tropical cooling to a shoaling of the 

thermocline. 

The role of local atmospheric forcing (in the IO basin) versus remote forcing (in the 

Pacific) is addressed by the perturbation experiments PAC and IND (Figs. 2b,c). Whereas the 

surface warming is almost exclusively due to the local forcing, a significant part of the 

subsurface IO cooling was contributed by the Pacific (wind) forcing (Figs. 2b,e). The 
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strongest cooling trend in PAC is found in the Indonesian Archipelago and off western 

Australia, from where a wedge with decreasing values extends west along the tropical south 

IO. While the remote forcing had a cooling effect all over the IO, the local forcing (Fig. 2c,f) 

produced an alternating pattern of zonally-extended bands of warming and cooling in the IO 

thermocline; its contribution to the thermocline cooling was mainly confined to the western 

basin.  

The local and remote contributions to the tropical IO trend are elucidated by time 

series of heat content anomalies (Fig. 3).  The net changes (as simulated in REF) can be 

understood as a linear superposition of the IO and Pacific forcing effects, i.e., by the sum of 

the changes simulated in IND and PAC (see Fig. S4). Averaged over the whole zonal extent 

of the IO (Fig. 3a), the linear trend between 7° and 15°S for 1960-1999 is 0.29 °C/decade in 

REF, with a larger contribution from PAC (0.18 °C/decade) than from IND (0.10 °C/decade). 

The changes in the western basin (Fig. 3b) are governed by stronger interannual variability, 

primarily due to IO forcing, with the multi-decadal trend as a relatively small residual; in 

contrast, the eastern basin is predominantly under the influence of the remote forcing (Fig. 3c), 

contributing the bulk (~75%) of the longer-term cooling. On decadal timescales (85-months 

filtered time series) the correlation between heat content anomalies in REF and PAC is 0.95 

for the eastern box. The time series (especially in the eastern basin) indicate that the trend was 

not monotonous: the cooling began in the mid-1970s after a phase of decadal warming, and it 

ended in the 1990s (the latter termination standing out especially in PAC). 

The spatio-temporal characteristics of the two forcing mechanisms are elucidated 

further by Hovmoeller diagrams (Fig. 4) that allow an inspection of the connectivity of the 

heat content changes along the IO thermocline ridge with the variability in the tropical Pacific. 

In each of the experiments, the heat content variability appears as a manifestation of a Rossby 

wave signal: westward propagation of the anomalies in the IO latitude band is ~13 cm/s, much 

higher than the mean speed of the South Equatorial Current (2-3 cm/s) in this area (see Fig. 
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S3). A similar westward progression is seen for the multi-decadal cooling trend during the 

1970s to 1990s. Overall, the set of experiments suggests that both the interannual variability 

and the multi-decadal changes in the eastern portion of the tropical IO thermocline were 

predominantly caused by oceanic signals entering from the Pacific (Fig. 4b), whereas the 

western basin (west of the Ninety-East-Ridge) was more strongly dominated by locally-forced 

interannual variability (Fig. 4c); local and remote trend contributions there were of 

comparable magnitude. 

 

5. Concluding discussion 

The ocean hindcast simulation based on the CORE atmospheric forcing formulation is shown 

to capture the late 20th-century subsurface cooling in the south tropical IO [Han et al., 2006; 

Alory et al., 2007] and its manifestation in sea level [Han et al., 2010; Timmermann et al., 

2010]. Aided by experiments with perturbations in the atmospheric forcing the simulations 

suggest: 

 The subsurface cooling and sea level fall occurred mainly between the mid-1970s and 

mid-1990s, bracketed by opposite tendencies before and after this period: an evolution 

consistent with the observed long-term sea level changes off western Australia and 

their interpretation as a footprint of multi-decadal climate variability in the tropical 

Pacific [Feng, et al., 2004, 2011].    

 Both IO and Pacific wind forcing contributed to the tropical IO changes: the IO 

forcing is the main cause of interannual variability in the western basin, whereas a 

large fraction of the multi-decadal variations is related to the winds over the Pacific 

Ocean. 

 The multi-decadal Pacific signal progresses westward in the IO with the same speed as 

the interannual (i.e., ENSO related) variability leaking in from the western tropical 
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The results have implications for the future evolution of the IO thermocline structure and sea 

level: in particular, a continuation of the late 20th-century trends could be expected, if the 

observed weakening of the Pacific trades [Vecchi et al., 2006] and shoaling of the western 

equatorial Pacific thermocline [Williams and Grottoli, 2010] should continue in the 21st 

century as suggested by anthropogenic climate change simulations [Collins et al., 2010]. 
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Figure Captions 

 

Fig. 1: Linear trend in SSH derived from REF in (cm/yr) for (a) 1993-2001, (b) 1960-1999. 

Time series for boxes I (c), II (d) and III (e) of SSH anomalies (cm): REF (black), satellite 

altimetry (cyan); compared to 100-300m heat content anomalies (GJ/m²) (red). Correlations 

between REF and altimetry are 0.94, 0.94 and 0.91 in box I, II and III. (f) Sea level anomalies 

at Fremantle: observed (cyan), REF (black); thin lines annual mean, thick lines low-pass (19-

years) filtered values; correlations between REF and tide-gauge are 0.89 (0.98) for annual 

mean (filtered) time series. 

Fig. 2: Linear trends (1960-1999) of IO zonal mean temperature (in K/century) for a) REF, b) 

PAC and c) IND; and of 100-300 m heat content (in PW/m²) for d) REF, e) PAC and f) IND. 

Fig. 3: Relative influence of Indian and Pacific forcing on IO changes: heat content anomaly 

(100-300 m) (GJ/m²) averaged over the boxes marked in Fig. 2 for (a) whole IO extent, b) 

western IO and c) eastern IO; d) sea level anomaly (cm) at Fremantle for REF (red), PAC 

(blue), IND (green). 

Fig. 4: Zonal propagation of heat content (100-300 m) anomalies (GJ/m²) averaged between 

15°S-7°S in the Indian, and 6°S-12°N in the Pacific Ocean for a) REF, b) PAC and c) IND. 
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