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[1] To understand the gradual global cooling during the mid-Pliocene (3.5-2.5 Myr ago)
one needs to consider the tectonical constriction of tropical seaways, which affected ocean
circulation and the evolution of climate. Here we use paired measurements of §'%0 and
Mg/Ca ratios of planktonic foraminifera to reconstruct the Pliocene hydrography of the
western tropical Indian Ocean (Site 709C) and changes in the Leeuwin Current in the
eastern subtropical Indian Ocean (Site 763A) in response to Indonesian Gateway
dynamics. Today, the Indonesian Throughflow (ITF) and, subsequently, the warm
southward flowing Leeuwin Current off Western Australia are essential for the polar heat
transport in the Indian Ocean. During 3.5-3 Ma, sea surface temperatures significantly
dropped in the Leeuwin Current area, becoming since ~3.3 Ma 2°C—-3°C cooler than the
rather unchanged sea surface temperatures from the eastern and western tropical Indian
Ocean. We refer this drop in sea surface temperatures to a weakened Leeuwin Current with
severe climatic effects on Western Australia induced by a tectonically reduced surface ITF.
We suggest that this reduced surface ITF led to a diminished poleward heat transport in the

Indian Ocean resulting in a weakened Leeuwin Current and possibly to cooling of the

Benguela upwelling system.
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Leeuwin Current dynamics: Implications for Indian Ocean polar heat flux, Paleoceanography, 26, PA2217,
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1. Introduction

[2] During the mid-Pliocene, earth gradually changed from
greenhouse with globally warmer temperatures and minor ice
coverage at high northern latitudes to icehouse with the
prominent Northern Hemisphere Glaciation and the exten-
sion of continental ice sheets [Ravelo et al., 2004; Mudelsee
and Raymo, 2005]. This climate transition was accompa-
nied by a main tectonic reorganization of the Indonesian
Gateway triggering a change in the throughflow from initially
South Pacific to North Pacific subsurface waters as indicated
by a significant cooling at subsurface levels in the tropical
eastern Indian Ocean [Cane and Molnar, 2001; Karas et al.,
2009]. A tectonically induced effect on the meridional heat
transport toward the Southern Hemisphere was not yet
proven, although today the Indonesian Throughflow (ITF)
is assumed to be responsible for the largest poleward heat
flux of ~0.59 PW (1 PW = 10'> W) in the Southern Ocean
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[Talley, 2003; Gordon, 2005]. The Leeuwin Current, which
is an important branch of the poleward heat transport in the
Indian Ocean, is mainly drawn from the ITF [Feng et al.,
2003]. At modern conditions the Leeuwin Current trans-
ports up to 5 Sverdrups (1 Sverdrup=10°m* s ') of relatively
warm and less saline tropical waters in the upper 200-250 m
from the ITF region southward along the west coast of Aus-
tralia, predominantly against equatorward winds (Figure 1)
[Smith et al., 1991]. It thereby suppresses coastal upwelling
[Morrow et al., 2003] and leads to distinctly warmer sea
surface temperatures (SST) than at any other subtropical
eastern boundary zone commonly characterized by strong
upwelling.

[3] We here present combined planktonic foraminiferal
Mg/Ca and 6'®0 data spanning the time period from 6 to 2 Ma
from ODP sites 763 A in the subtropical eastern Indian Ocean
within the present influence of the Leeuwin Current (20°
35.20'S, 112°12.50'E, 1367 m water depth; Figure 1) and
709C (03°54.9'S, 60°33.1'E, 3041 m water depth; Figure 1) in
the tropical western Indian Ocean (isotope data from
Shackleton and Hall [1990]). We used the combined 6'*0-
and Mg/Ca-derived temperatures from Site 763 A to calculate
880 of seawater that approximate changes in ancient sali-
nities (see section 2.4). The analysis of the surface dwelling
planktonic foraminifera Globigerinoides sacculifer allow us
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Figure 1. Chart of annual ocean temperatures (color shading, degrees Celsius) and salinities (contour
lines) at 20 m water depth [Locarnini et al., 2006; Antonov et al., 2006]. Paleoceanographic proxy
data were generated for ODP Sites 763A and 709C. The pathways of the Indonesian Throughflow (ITF)
and Leeuwin Current (LC) and locations of sediment cores discussed in the text are indicated.

to monitor changes in the surface near Leeuwin Current
compared to the Indo-Pacific Warm Pool.

2. Materials and Methods

2.1. Age Models of Studied DSDP/ODP Sites

2.1.1. Site 709C

[4] To improve the initial age control from Shackleton and
Hall [1990], we tuned the adjusted G. ruber/G. sacculifer
880 record (see section 2.2) [Shackleton and Hall, 1990] to
the G. sacculifer 60 record of Site 806 [Wara et al., 2005]
using Analyseries 1.2 [Paillard et al., 1996] (Figure 2a).
Our tuning is thereby based on the graphical correlation
between both records with linear integration between single
tuning points. We selected Site 806 as a reference for
tuning due to the following reasons. First, as both sites lie
within the Indo-Pacific Warm Pool, we assume a similar
development of both §'%0 signals over time. Second, the
resolution of the G. sacculifer §'*0 record of Site 806 is
high enough (~8 kyr) to serve as a tuning reference. Third,
the initial age model of Site 806 used by Wara et al.
[2005] was improved by Karas et al. [2009], by tuning
the high-resolution benthic 8'%0 record (4-2 Ma) to the
LRO4 stack [Lisiecki and Raymo, 2005]. The correlation
between both §'%0 records is 0.6 (after removal of linear
trend and mean). The resulting depth-age relationship is
supported by the good fit with the nannofossil biodatums
(maximum deviation of <1 m, or <100 kyr) reported by
Shackleton and Hall [1990], the ages of which were updated
to the ATNTS 2004 time scale (Figure 2b) [Lourens et al.,
2004]. Therefore, the combined use of tuning of the plank-
tonic isotope record to Site 806 and well constrained nan-
nofossil biodatums produces a reliable age model for Site
709C.

2.1.2. Site 763A

[5s] For an initial age control of Site 763A, we selected
those magnetic reversal ages (depths from 7ang [1992]; ages
were updated to the ATNTS 2004 time scale [Lourens et al.
2004]), which lie on the already established depth-age plot
for this site [Sinha and Singh, 2008]. To further improve the
age model especially during the critical time period 3.5-3 Ma,
we generated a high-resolution (~5.5 kyr) benthic §'*0
(Cibicidoides wuellerstorfi) record for the interval ~3.8-3.1 Ma,
which was then fine tuned to the LR04 stack (Figure 3a)
[Lisiecki and Raymo, 2005]. The correlation between records
is 0.7. To further check the established stratigraphy during
3.8-3.1 Ma, we performed astronomical tuning. The oblig-
uity (41 kyr) filtered component of the benthic §'*0 record is
in accordance to the obliquity solution of Laskar [1990]
(Figure 3b) supporting our age model. We observed and
corrected for a phase lag of ~8 kyr between obliquity and
obliquity-controlled variations in the benthic 6'*O record.
This phase lag is thought to be relatively constant and is
linked to climatic processes in the high latitudes [e.g.,
Tiedemann et al.,2007]. The resulting depth-age curve for the
entire time period studied matches the magnetic reversal ages
(Figure 3c).

2.2. Mg/Ca and §'0 Analysis

[6] For stable oxygen isotope and Mg/Ca analyses,
~30 specimens were selected from shallow dwelling plank-
tonic foraminifera G. sacculifer (without sac-like chamber).
Only in a few cases, the number had to be reduced to
~10 specimens. Specimens were selected from the 315—
355 um size fraction to avoid size effects in §'%0 values and
Mg/Ca [Elderfield et al., 2002]. The size fraction had to be
widened to the 315-400 pm size fraction when only insuffi-
cient foraminiferal tests were within the narrow fraction.
Subsequently, sample material was gently crushed, mixed
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Figure 2. Revised strati 8graphic framework of Site 709C. (a) Tuning of the high-resolution planktonic

G. ruber/G. sacculifer §'

O record (red hne G. ruber values were adjusted to G. sacculifer) [Shackleton

and Hall, 1990] to the G. sacculifer 60 record of Site 806 (black line) [Wara et al., 2005]. Arrows
indicate tie points. (b) Diagram showing the age-depth relationship of Site 709C (red hne) Nannofossil
datums [Shackleton and Hall, 1990] are indicated (black crosses).

and divided into two thirds used for Mg/Ca analyses, and one
third for stable isotope measurements. Isotope measurements
were either conducted on a Finnigan MAT-252 (at IFM-
GEOMAR, Kiel) or on a Finnigan MAT-251 mass spec-
trometer (at the Leibniz-Laboratory for Radiometric Dating
and Stable Isotope Research, Kiel), both equipped with a fully
automated carbonate preparation device. Both machines had
an analytical precession better than +£0.07%o for §'%0 (x10).
All values are reported relative to Pee Dee Belemnite (PDB,
based on calibration directly to National Bureau of Standards,
NBS-19). From Site 709C, we used the published §'*0 record
from Shackleton and Hall [1990], who selected in the older
part of the core (>4 Ma) G. sacculifer and in the younger part
G. ruber spec1mens In order to make the §'%0 values from
both species comparable, we added 0.25%o to the & 06 ruber
record, being consistent to studies at the same site [Shackleton
and Hall, 1990] and in the tropical eastern Indian Ocean Site
214 [Karas et al., 2009].

[7] For Mg/Ca analyses, foraminiferal tests were cleaned
according to the established cleaning protocol of Barker
et al. [2003] (nonreductive) in accordance to previously
published Mg/Ca data from Site 214 used for comparison
[Karas et al., 2009]. Measurements were performed on a
simultaneous, radially viewing ICP-OES (Ciros CCD SOP,
Spectro A.I., Germany, Institute of Geosciences, University
of Kiel). The analytical error for the Mg/Ca ratios is
~0.17%. Replicate analysis of the same samples, cleaned
and analyzed during different sessions, show a standard
deviation of <0.1 mmol/mol (relative standard deviation
< 3%). Monitoring of Fe/Ca and Mn/Ca indicated that con-
tamination with clays or Mn carbonates after cleaning was
not an issue. Fe/Mg values are commonly significantly lower
than 0.1 mmol/mol indicative for negligible contamination
by silicate phases [Barker et al., 2003]. Only at Site 763A we
rejected 8 samples, as Fe/Mg ratios were >0.15 mmol/mol
accompanied by relatively high Mg/Ca ratios (~4 mmol/mol)
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Fi§ure 3. Stratigraphic framework of ODP Site 763A. (a) Tuning of the high-resolution benthic
8%0¢ wuellerstorsi TeCOId (red line) to the global benthic reference stack LR04 (black line) [Lisiecki
and Raymo, 2005]. Arrows indicate tie points. (b) The filtered 41 kyr component of the benthic
580 wuellersiori T€COTd (red line) corrected for a 8 kyr phase lag being in accordance to the obliquity
solution (black line) [Laskar, 1990]. (c) Diagram showing the age-depth relationship (red line) of Site 763 A.
Crosses indicate magnetic reversal datums [Tang, 1992; Sinha and Singh, 2008] that were updated to the

ATNTS 2004 time scale [Lourens et al., 2004].

which might be related to silicate contamination. For com-
parison with Mg/Ca derived temperature records from Site
214 [Karas et al., 2009] the analysis of foraminiferal Mg/Ca
ratios and the calculation of Mg/Ca temperatures are done
consistently for all records shown in this study. Absolute
differences in Mg/Ca data originating from the application of

different Mg/Ca temperature calibrations or cleaning techni-
ques (e.g., reductive cleaning) can hence be ruled out.

[8] Mg/Ca ratios of G. sacculifer were converted into
temperatures by using the multispecies calibration of Anand
et al. [2003]: Mg/Ca = 0.38 exp(0.09 x SST) with an
accuracy of £1.2°C. G. sacculifer is assumed to calcify in
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Figure 4. (a) Surface layer G. ruber/G. sacculifer 60 records from Site 214 (black line) [Karas et al., 2009],
Site 709C (blue line) [Shackleton and Hall, 1990], and Site 763A (red line, this study). (b) G. sacculifer Mg/Ca
records from sites 763A (red line) and 709C (blue line) used to calculate surface temperatures. Note that Mg/Ca
ratios from Site 709C were corrected after Regenberg et al. [2006] (see section 2.3).

the upper 50 m water depth [Anand et al., 2003] and most
likely records annual temperatures, as this shallow dwelling
species occurs throughout the year in the tropics [Lin et al.,
2004].

2.3. Dissolution Effects on Pliocene Mg/Ca

[s] Calcite dissolution is the most critical issue for Mg/Ca
thermometry, as Mg®" is selectively removed from the
foraminiferal tests [e.g., Regenberg et al., 2006]. From core
top studies, Regenberg et al. [20006] deﬁned critical ACO3
threshold values of ~20 pumol/kg, below which Mg*" loss
starts and proposed species-specific correction equations.

[10] Site 763A location (1367 m water depth) is situated
well above the present lysocline in that region (deeper than
~3900 m) [Martinez et al., 1999] and is above the critical
ACO3 level of ~20 pmol/kg (data from World Ocean
Circulation Experiment transect 110 were used to calculate
ACO3 levels [Lewis and Wallace, 1998]). As Hagq et al.
[1990] and Sinha et al. [2006] also point to excellent fora-
miniferal preservation during the studied Pliocene time
interval we decided not to correct the initial Mg/Ca values
(Figure 4b). Instead, for Site 709C, we corrected the initial
Mg/Ca data using the species-specific correction equation
for G. sacculi 2/’er (Figure 4b) [Regenberg et al., 2006], a
modern ACO3 values are on average at ~10 umol/kg (data

from World Ocean Circulation Experiment transect 102E/W
was used to calculate ACO3 ™ levels [Lewis and Wallace,
1998]) well below the critical threshold values. Nonethe-
less, Site 709C (3041 m water depth) is located above the
present lysocline (~4400 m in the central tropical Indian
Ocean [Banakar et al., 1998]) and carbonates are well
preserved throughout the studied time interval [Backman
et al., 1988].

[11] Possible temporal changes in calcite preservation
affecting the Mg/Ca record are not defined in the applied
dissolution correction. A significant change in calcite pres-
ervation, however, is not expected for the studied Pliocene
time period at Site 709C. The SSTyg/ca resemble those of
the shallower Site 214, which are presumably not biased by
dissolution [Karas et al., 2009] and do not show distinct
changes during the Pliocene which one would expect when
preservation would have notably changed (Figure 5a). Rela-
tively high and stable CaCO; contents of ~90% over the last
4 Myr [Curry et al., 1990] support our notion. Even changes
in the depth of the lysocline in the order of ~0.5 km as pre-
dicted by Farrell and Prell [1991] for the tropical Pacific
over the last 4 Myr, would produce an error in Mg/Ca of
~5% [Lea et al., 2000] when assuming a loss of ~12% in
foraminiferal Mg/Ca per kilometer water depth [Regenberg
et al., 2006; Dekens et al., 2002].
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Figure 5. (a) G. ruber/G. sacculifer SSTygc, from

Site 214 (black line) [Karas et al., 2009], Site 709C

(blue, this study), Site 763A (red, this study), and alkenone-derived SST from Site 1084 in the Benguela
upwelling system (dashed) [Marlow et al., 2000; Etourneau et al., 2009]. (b) G. crassaformis Mg/Ca-derived
temperatures at the subsurface level from Site 214 (dashed) [Karas et al., 2009]. (c) The LR04 global ice

volume record from Lisiecki and Raymo [2005]. (d)
subsurface G. crassaformis (Site 214, dashed) [Karas

2.4. Calculation of 60

[12] To assess changes in ancient sea surface salinities, we
used the combined 6'*0 and Mg/Ca temperature [e g,
Niirnberg, 2000] records from the surface dwelling plank-
tonic species G. sacculifer. The foraminiferal 'O signal is
thereby dependent on global ice volume, salinity, and ocean
temperature, whereas the foraminiferal Mg/Ca ratio is pre-
dominantly determined by the ocean temperature In accor-
dance to Karas et al. [2009], we calculated 8"804eawater using
the equation of Shackleton [1974], which reflects a combi-
nation of ice volume controlled changes plus local variations

seawater

G. sacculifer (Site 214, black; Site 763A, red) and
et al., 2009] 6'°0cawater records.

in 6"80eawater due to regional hydrological changes. We did
not correct §' *Ogeawater for changes in the Pliocene global ice
volume as §'®0gayater records from different core locations
are equally 1nﬂuenced by variations in global ice volume.
The resulting 8" 0geawater values with an absolute error of
~£0.3%o [Schmzdt 1999; Rohling, 2007] approximate rela-
tive changes in salinity. The calculation of absolute paleo-
SSS from 6"®0eawater includes many assumptions, which
are not always warranted. In partrcular different ocean
depths exhibit different salinity versus 8804 eawater relation-
ships [e.g., Regenberg et al., 2009]. Further, the observed
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linear relationship between salinity and 6 80geawater MOSt
likely changed through time [Rohling and Bigg, 1998]. We
hence remain interpreting the relative changes of §'*Ogcawater
reflecting regional hydrological changes.

3. Results and Discussion

3.1. Development of Surface Hydrography

[13] The G. ruber/G. sacculifer §'*0 records of Site 709C
from the tropical western Indian Ocean [Shackleton and Hall,
1990], of Site 763A from the subtropical eastern Indian
Ocean, and of Site 214 from the tropical eastern Indian Ocean
(Figure 4a) [Karas et al.,2009] show similar long-term trends
with decreasing values from the early Pliocene until ~3.5 Ma,
changing toward more positive values during mid-Pliocene
global cooling [Ravelo et al., 2004]. However, absolute §'%0
values differ between cores. 6'0 values at Site 709C are
commonly more positive than those at sites 214 and 763A,
possibly indicating higher salinities there. Since ~3.5 Ma,
880 values at Site 763A start to deviate showing at times
more positive values compared to Site 214. Foraminiferal
Mg/Ca implies similar SSTyy/ca during the early Pliocene
at all sites with a long-term warming trend of ~2°C toward
the mid-Pliocene at ~4-3.6 Ma (Figures 4b and 5a). This
observation is in accordance with Brierley et al. [2009], who
showed that during the early Pliocene the tropical warm pool
was expanded with a reduced temperature gradient between
the equator and the subtropics. During the mid-Pliocene,
SSTwg/ca from the tropical western Indian Ocean Site 709C
remained stable at ~26°C (Figure 5a) and broadly resemble
those from tropical eastern Indian Ocean Site 214 [Karas
et al., 2009]. The long-term decrease of ~1°C, which is evi-
dent at sites 214 and 806 [Wara et al., 2005; Karas et al.,
2009], is not seen at Site 709C implying that the tropical
western Indian Ocean might have been less influenced by
mid-Pliocene global cooling [Ravelo et al., 2004]. From
~3.3 Ma onward, SSTyg/c, at Leeuwin Current Site 763A
became significantly cooler by 2—-3°C than at tropical sites
214 and 709C from the present-day Indian Ocean Warm
Pool. This gradient in SSTyg/c, is comparable to modern
conditions with an annual SST difference of ~2°C between
sites [Locarnini et al., 2006], implying that present-day SST
conditions were already reached during the mid-Pliocene.

[14] Within the critical time period at 3.5-3 Ma, when we
register a different hydrographic development at the ocean
surface between sites 214 and 763A, there is evidence for
distinct tectonic induced changes in the subsurface level
(~300—450 m water depth) G. crassaformis Mg/Ca derived
temperatures and 880 cawater (Figures 1, 5a, 5b, 5d) [Karas
et al., 2009] at tropical eastern Indian Ocean Site 214. The
observation of more saline subsurface conditions during
~3.3-3.1 Ma at Site 214 (Figure 5d) was interpreted as a
consequence of the tectonic reorganization of the Indonesian
Gateway [Karas et al., 2009]. Either the contribution of
cooler and fresher ITF waters to this site was reduced and
replaced by warmer and saltier tropical Indian Ocean waters
or a switch back to more warm and saline South Pacific
source waters occurred [Karas et al., 2009]. After ~2.95 Ma,
the change in ITF subsurface waters from a South to a
dominant North Pacific source finalized [Karas et al., 2009]
indicated by fresher and cooler conditions at the subsurface
level at Site 214 (Figures 5b and 5d).
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3.2. Pliocene Changes in the Leeuwin Current and
Indian Ocean Polar Heat Transport

[15] It is important to note, however, that at Site 763 A the
surface ocean definitely cooled before the switch of ITF
source waters finalized at ~2.95 Ma. Surface cooling began at
~3.5 Ma, and after ~3.3 Ma the impact of warm tropical
waters diminished compared to the tropical eastern and
western Indian Ocean sites 214 and 709C (Figure 5a). At the
same time, subsurface waters at Site 214 became more saline
in line with a reduction of the ITF (Figure 5d) [Karas et al.,
2009]. Both, the more saline conditions at the subsurface
level at Site 214 and the cooler surface conditions at
Site 763 A suggest a significant reduction of the ITF at 3.3—
3.1 Ma. As today the Leeuwin Current is controlled mainly
by the ITF [e.g., Feng et al., 2003], we suspect that it was
clearly reduced during the mid-Pliocene when the ITF
declined due to the new tectonic setting in the Indonesian
Gateway [Cane and Molnar, 2001; Gaina and Miiller, 2007].
We presuppose in this respect that the Leeuwin Current was
present also during the mid-Pliocene indicated by G. saccu-
lifer 8" 04eawarer records from sites 214 and 763A, which
are very similar and imply a common ITF source water
(Figure 5d).

[16] In fact, various modeling studies pointed out the
effects of the mid-Pliocene ITF reduction [Hirst and Godfrey,
1993; Godfirey, 1996; Lee et al., 2002]. With an entirely
closed Indonesian Gateway, these models generate scenarios
quite similar to our reconstructions. Our observed SSTyig/ca
pattern in the Indian Ocean suggests a weaker Leeuwin
Current being ~2°C cooler, while SSTyy/ca at the tropical
eastern and western Indian Ocean sites 214 and 709C remain
rather stable. In this respect, a cooling of surface ITF waters
during this time interval causing the SSTyg/c, decline in the
Leeuwin Current area seems rather unlikely as the SSTyg/ca
at Site 214 (and at Site 806) [Wara et al., 2005] are hardly
changing (Figure 5a) [Karas et al., 2009]. We therefore
consider the reduction in ITF and not just a cooling as caus-
ative for the cooling at Leewin Current Site 763A. This notion
is further supported by tectonic reconstructions of the ITF
region, which propose a shoaling of the Indonesian Gateway
with the emergence of small islands like Timor [Cane and
Molnar, 2001; Gaina and Miiller, 2007; Kuhnt et al., 2004],
and in consequence, a restricted throughflow [Kuhnt et al.,
2004].

[17] The tectonic reorganization might indeed have reduced
the surface throughflow volume since ~3.3 Ma, whereas the
subsurface ITF after ~3.1 Ma again started to cool and freshen
due to the switch to North Pacific source waters [Karas et al.,
2009]. This switch might have supported the surface layer
cooling of Site 763A through mixing processes of the cold
and fresh subsurface waters from the Indonesian region [Hirst
and Godfrey, 1993; Song and Gordon, 2004]. In contrast,
changes in the monsoon systems (Indian and Asian mon-
soon), driving oceanographic changes in that area today and
possibly on glacial-interglacial timescales [Gordon et al.,
2003; Xu et al., 2008], are unlikely of having cooled the
(sub)surface during the mid-Pliocene time period ~3.5-3 Ma,
when Indonesian surface and subsurface flow changed. Sig-
nificant changes in the monsoon systems and in South China
SST clearly appeared after 3 Ma [Gupta and Thomas, 2003;
Jia et al., 2008].
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[18] Our findings of a reduced Leeuwin Current are con-
sistent with marine and terrestrial palynological studies off
northwestern Australia and from southwestern Australia,
respectively [Martin and McMinn, 1994; Dodson and
Macphail, 2004]. These studies suggest the expansion of
aridity around 3 Ma in the southwest, the disappearance of
rain forest and the development of shrub/grasslands in
northwestern Australia. Indeed cooler SST in that area
through a reduced Leeuwin Current would have caused a
significant reduction in precipitation in the coastal areas of
western and southwestern Australia [Feng et al., 2003].

[19] Apart from climatic effects on western Australia, we
observe from 3.5 to 3 Ma a similar surface layer cooling at
Site 1084 in the Benguela upwelling system [Marlow et al.,
2000] as we registered at Site 763A (Figure S5a). Both
temperature records show an almost identical development
until 2.4 Ma, when alkenone-derived SST from Site 1084
further drops significantly. The good match of both SST
records until late Pliocene times supports our notion that the
restriction of the Indonesian Gateway possibly contributed
to the cooling of the Benguela upwelling system [Karas
et al., 2009]. Such cooling most likely resulted not only
from the proposed cooling of subsurface waters in the
tropical eastern Indian Ocean [Karas et al., 2009], but also
from the reduced surface throughflow of Indonesian waters.
Support comes from modeling studies [Hirst and Godfrey,
1993; Godfrey, 1996], which suggest both a weaker Leeu-
win Current when the ITF is closed, and a weaker Agulhas
Current resulting in a significant surface cooling of ~1°C of
the Agulhas outflow region close to Site 1084. In conse-
quence, the poleward heat flux in the Indian Ocean would
have been considerably reduced [Hirst and Godfrey, 1993;
Gordon, 2005] explaining the enhanced meridional tem-
perature gradient in the Indian Ocean and the cooling of
the Benguela upwelling system during a time of global
warmth with reduced meridional temperature gradients
[Brierley et al., 2009]. After ~2.4 Ma, the significant cooler
alkenone SST at Site 1084 compared to the SSTyjg/c, at
Site 763A are most likely related to the intensification of
the trade winds and marked cooling of the Southern Ocean,
which initiated the modern-like Benguela upwelling system
(Figure 5a) [Etourneau et al., 2009]. At the same time,
SSTwg/ca at Site 763A remained relatively warm caused by
a still flowing Leeuwin Current. Even though it was cooler
and/or reduced, it prevented strong coastal upwelling, which
would likely have developed without the presence of the
Leeuwin current [Smith et al., 1991; Morrow et al., 2003].

4. Conclusions

[20] We reconstructed the Pliocene surface hydrography
of the tropical western and subtropical eastern Indian Ocean.
During the critical time period ~3.5-2.95 Ma of the
restriction of the Indonesian Gateway, Ocean surface tem-
peratures from the eastern and western tropical Indian Ocean
sites 214 [Karas et al., 2009] and 709C remained rather
constant, while those at Site 763A significantly dropped,
being since ~3.3 Ma 2-3°C cooler than the tropical sites.
This implies a reduced Leeuwin Current inline to significant
tectonic induced changes in the subsurface level at Site 214
[Karas et al., 2009]. Hence, we suggest that the tectonic
restriction of the Indonesian Gateway led to a reduced sur-
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face ITF, which considerably weakened the Leeuwin Current
since ~3.3 Ma. Most likely, this reduced surface ITF with a
weakened Leeuwin Current led to a diminished poleward heat
transport, possibly resulting in a cooling of the Benguela
upwelling system.
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