Workload-Intensity-Sensitive Timing Behavior Analysis for Distributed Multi-User Software Systems

Matthias Rohr^{1,2}, André van Hoorn², Wilhelm Hasselbring^{2,3}Marco Lübcke⁴, and Sergej Alekseev^{5,6}

- ¹ BTC Business Technology Consulting AG, Germany,
- *, 2 Graduate School TrustSoft, University of Oldenburg, Germany,
 - ³ Software Engineering Group, University of Kiel, Germany,

 - ⁴ CeWe Color AG & Co. OHG, Oldenburg, Germany, ⁵ Nokia Siemens Networks GmbH, Berlin, Germany,
- ⁶ Hochschule Mittweida, University of Applied Sciences, Mittweida, Germany

January 29, 2010

Joint WOSP/SIPEW International Conference on Performance Engineering, San Jose, California, USA

^{*}This work is supported by the German Research Foundation (DFG), grant GRK 1076/1

Motivation 1/2

Motivation

Foundation

Approach

Related Wor

- Workload-intensity can be a major influence to timing behavior in enterprise information systems
- Varying workload-intensity can cause high variance in timing behavior
- High variance can make it difficult to draw statistical conclusions
 - E.g., proper threshold determination for anomaly detection

Motivation 1/2

Motivation

Approach

Helated Wo

- Workload-intensity can be a major influence to timing behavior in enterprise information systems
- Varying workload-intensity can cause high variance in timing behavior
- High variance can make it difficult to draw statistical conclusions
 - E.g., proper threshold determination for anomaly detection

Motivation 2/2 - Approach idea

Motivation 2/2 - Approach idea

Matthias Rohr, BTC AG, Workload-Intensity-Sensitive Timing Behavior

Motivation 2/2 - Approach idea

Motivation

Approach

Our approach

- Goal: "Reduce" variation for statistical timing behavior analysis
- Categorization based on workload-intensity levels
- Requires only light-weight common monitoring infrastructure

Agenda

- **1** Motivation
- Poundations
- Workload-intensity-sensitive timing behavior analysis
- 4 Empirical evaluation
- Empirical evaluation

Motivation

Foundations

Approach

Related Worl

Conclusions and future **6** Related work

Conclusions and future work

naa

Influences to Software Timing Behavior

- System architecture and implementation:
 - Hardware design
 - Software design
 - Middleware [?]

System usage:

- Workload-intensity
 - Concurrent service requests [Happe et al. 2008]
 - Number of active users [?]
- Individual request characteristics
 - Parameter values and parameter size [?]
 - Caller identity / stack content [?]

State:

- Cache content
- Load balancer state
- Software application state
- Other active processes on same platform
- Database content

Foundations

Response times and workload intensity

Approach

Response times and execution times

Agenda

- Motivation
- 2 Foundations
- Workload-intensity-sensitive timing behavior analysis
- 4 Empirical evaluation

Motivation

Foundations

Approach

Evaluation

Related Wor

Conclusions and future

Related work

Workload-intensity-sensitive Timing Behavior Analysis

1. Monitoring

- Recording of:
 - Response times: Time between start and end of software operation executions
 - Execution sequences corresponding to a user request
 - Host identifier
- Reconstruction of Traces and Dependency Graphs
- Kieker framework^a [?]

ahttp://kieker.sourceforge.org

2. Computation of workload-intensity from monitoring data:

Approach

Related Wor

Conclusion and future work

3. Categorization based on workload-intensity levels

Workload-intensity-sensitive Timing Behavior Analysis

- 1. Monitoring
- 2. Computation of workload-intensity from monitoring data:
- \rightarrow next slides
- 3. Categorization based on workload-intensity levels

Motivation

Foundation:

Approach

Evaluation

Conclusion

Workload-intensity-sensitive Timing Behavior Analysis

2. Computation of workload-intensity from monitoring data:

3. Categorization based on workload-intensity levels

- Approach

The pwi range is divided into intervals (e.g., 15) of equal length

Bins are extended to minimum size (e.g., 100 observations)

Workload intensity metrics

 Key element of our approach: Four alternative workloadintensity metrics, denoted pwi (Platform Workload Intensity):

Metric	Time metric	Execution environment	Operation weighting
pwi₁	Response times	Non-distributed	No weighting
pwi ₂	Execution times	Non-distributed	No weighting
pwi ₃	Execution times	Distributed	No weighting
pwi₄	Execution times	Distributed	Learned

Motivation

Foundations

Approach

Evaluation

Related W

Motivation

Foundatio

Approach

Evaluation

Conclusions and future

Figure: Example traces: UML Sequence Diagrams

Motivation

Approach

naa

Motivation

Approach

Evaluation

Evaluation

Conclusions and future

Motivation

Approach

Lvalaation

Deleted We

Conclusion and future

naa

Motivation

Approach

Evaluation

Related Wo

Conclusion and future work

naa

An operation execution's pwi_2 is the average number of concurrent traces during its execution time period.

- Difference to pwi₁: Execution time period instead of response time period
- No competition for resources during waiting for sub-calls

Motivation

Approach

Evaluation

Lvaluation

Conclusions and future

An operation execution's pwi_2 is the average number of concurrent traces during its execution time period.

- Difference to pwi₁: Execution time period instead of response time period
- No competition for resources during waiting for sub-calls

Motivation

Approach

Related Wo

Conclusions

An operation execution's pwi_3 is the average number of concurrent active executions within the same execution environment during its execution time period.

- pwi₃ extends pwi₂ for distributed systems.
- Assumption: Execution contexts have own hardware platform
- Hypothesis: Little competition for resources with executions in other execution environments.

Motivation

Approach

Evaluation

Related V

An operation execution's pwi_3 is the average number of concurrent active executions within the same execution environment during its execution time period.

Motivation

Approach

neiateu wo

An operation execution's pwi_3 is the average number of concurrent active executions within the same execution environment during its execution time period.

Motivation

Approach

Evaluatio

Related Wo

 pwi_4 extends pwi_3 by using the weight $w_{o,p} \in W$ for considering concurrent executions of p for evaluating o.

- pwi₁-pwi₃ equally consider different (local) operations
- Resource competition leads to high weights.

Computation of weight matrix W

- W is determined via machine learning from historical monitoring data
- Learning goal: maximum standard deviation reduction
- High computational costs if many operations are instrumented
- Convention: $w_{o,p}$ is 0, if o and p are not in the same execution environment
- Heuristic: Correlation matrix provides good starting values

Farmation

Approach

Related Wo

Software system with 2 operations:

- Wait: Non-busy waiting for 300 ms.
- Work: CPU-intensive number crunching.

Motivation

Foundat

Approach

Evaluation

neiated w

Software system with 2 operations:

- Wait: Non-busy waiting for 300 ms.
- Work: CPU-intensive number crunching.

Experiment setting:

- 120,000 random execution of wait and work
- 1-24 parallel executions

Motivation

Foundation

Approach

Evaluation

Related V

Conclusions and future

Software system with 2 operations:

- Wait: Non-busy waiting for 300 ms.
- Work: CPU-intensive number crunching.

Experiment setting:

- 120,000 random execution of *wait* and *work*
- 1-24 parallel executions

Results:

Weight matrix:

Foundation

Approach

Related Wo

Helated Wo

	work	wait
work	2.01	-0.05
wait	1.03	0.05

Software system with 2 operations:

• Wait: Non-busy waiting for 300 ms.

Work: CPU-intensive number crunching.

Experiment setting:

• 120,000 random execution of wait and work

• 1-24 parallel executions

Results:

Weight matrix:

Standard dev. reduction (%):

	work	wait
work	2.01	-0.05
wait	1.03	0.05

	pwi ₄
work	72.5 ± 2
wait	18.8 ± 9

Related Wor

Approach

Motivation

Foundat

Approach

Evaluation

Evaluation

MBTC Agenda

- Workload-intensity-sensitive timing behavior analysis
- **Empirical evaluation**

Motivation

Related work

Approach

Conclusions and future work

Evaluation

Evaluation methodology

Evaluation Metric

Reduction of standard deviation (in percent) in relation to the original dataset for each operation and in total weighted by the number of observations per operation.

- Evaluation and simulation techniques can benefit from "reduction" of standard deviation, e.g.,
 - in terms of requiring less observations,
 - providing tighter confidence intervals,
 - requiring less or shorter simulation runs [?].

Evaluation method:

- Results for pwi₁−₃ can directly be computed
- Evaluation of pwi₄ requires two separate data sets for training, and one for cross-validation
- Operations with less than 600 observations are accounted 0% reduction

Motivation

Approac

Evaluation

Conclusion

and future work

Approach

Evaluation

Case study 1/3 - Distributed Web Shop

Case study 1/3 - Distributed Web Shop

Results

- Standard deviation is reduced in average from 35% for pwi₁ up to 56% for pwi₄.
- Log-transforming the *pwi* values, before defining bins additionally improves standard deviation reduction by 29% in average.
- For *pwi*₄, this results in a standard deviation reduction of 65%.
- For some operations, there is no benefit.

Foundation

Approach

Evaluation

Related Wor

Case study 2/3 - Telecommunication System

Setting

- Telecommunication signaling system of Nokia Siemens Networks
- 8 instrumented operations on two clustered nodes

- Test workload using the companies own workload simulator
- Less than 15% of CPU utilization peak

Evaluation
Related Wor
Conclusions

Approach

Case study 2/3 - Telecommunication System

Motivation

Foundatio

Approa

Evaluation

Related Wo

Conclusions and future

- pwi₄ performs best in the comparison.
- For all *pwi* metrics, standard deviation reduction additionally increases by more than 30% if the logarithm of the *pwi* values are used for defining timing behavior classes.
- Traces do not cross execution environments $\Rightarrow pwi_2 = pwi_3$.

Case study 3/3 - Photo Shopping and Service Portal

Setting

- Customer portal for ordering photo prints and other photo products of CeWe Color AG, Europe's largest digital photo service provider.
- cewe color

- Large number of monitoring points: 161
- Low utilization: CPU utilization (averaged) stays below 15%
- Real workload Kieker monitoring framework used in production environment:

Motivation Foundation

Approach

Evaluation Related Wor

Conclusions

Case study 3/3 - Photo Shopping and Service Portal

Motivation

1 Ouridati

Approach

Evaluation

Onnelusion

- *pwi*⁴ performs best in the comparison of the four alternative methods (26.46%, 29.15% for log.).
- Single execution environment monitored $\Rightarrow pwi_2 = pwi_3$.
- 0% benefit was accounted for several operations with too few observations.

Agenda

- **1** Motivation
- 2 Foundations
- Workload-intensity-sensitive timing behavior analysis
- Empirical evaluation
- 6 Related work
- **6** Conclusions and future work

Approach
Evaluation
Related Work

Motivation

Related Work

- ?: Requests are grouped by request complexity.
- ?: Workload intensity changes related to the day time are used in network data analysis.
- ?: Requests are grouped according to resource usage.
- ?: Control-flow (Caller context).
- ?: Control-flow (Stack content).
- ?: Control-flow (Trace context).

Approach

Motivation

Evalua

Related Work

Agenda

- Motivation
- 2 Foundations
- Workload-intensity-sensitive timing behavior analysis
- 4 Empirical evaluation
- Related work
- Helated work
- 6 Conclusions and future work

Conclusions and future work

Motivation

Approach

Conclusions

Approach summary

- Goal: "Reduce" variance for statistical measurement analysis
- Workload-intensity metrics pwi₁ pwi₄
- Categorization based on workload-intensity
- No additional monitoring requirements

Empirical evaluation results

- Applicability in real, distributed, enterprise software systems
- Observation: A significant part of the variance in timing behavior could be controlled by considering workload intensity.
- pwi4 (operation specific weights) performed best.
- No big difference between pwi₁ (response times), and pwi₂ (execution times) in the case studies.

Foundation

Approach

Related Wor

- Application in the context of anomaly detection.
- Comparison of the standard deviation reduction with the pwi workload-intensity metrics with that resulting from other timing behavior influences, such as parameter values, request types, and control flow context, in standard deviation reduction.
- Comparison of the pwi workload-intensity metrics with other workload intensity metrics, such as CPU utilization, load average, and arrival rate.

Motivation

Foundations

Approach

Evaluation

Motivation

Approach

Evaluation

B. L. C. J. M.

Conclusions and future work

200