Model-Based Architecture Restructuring Using Graph Clustering

Niels Streekmann

OFFIS - Institute for Information Technology
Technology Cluster Enterprise Application Integration

Escherweg 2, 26121 Oldenburg, Germany
niels.streekmann @offis.de

Abstract

Implementations of existing systems often do not follow
the originally intended architecture. Continous extension
disregarding the intended architecture leads to a decline of
the maintainability of these systems. To recover maintain-
ability architectural restructuring becomes necessary. We
present a model-based architecture restructuring approach
that is based on business requirements. The goal of the ap-
proach is to semi-automatise the architecture restructuring
process in order to support reengineers. We use graph clus-
tering to implement the automatisation.

1. Introduction

In many existing business information systems the main-
tainability has worsened due to years of maintenance that
did not respect the originally intended architecture of these
systems. This lead to architecture erosion. Given reasons
are often the pressure for quick implementations of busi-
ness requirements and the difficulty to convince customers
of the necessity to invest in architecture maintenance. These
investments are commonly not made until they become in-
evitable. In consequence the adaptability of business sys-
tems to quickly changing business requirements decreases.

One possibility to recover maintainability and to enable
the efficient implementation of new business requirements
is architecture restructuring. We assume that maintainabil-
ity is higher when the architecture includes clearly defined
interfaces that are based upon business functions. This as-
sumption complies with the concept of service-oriented ar-
chitectures, which are at the centre of interest today, be-
cause they allow a stronger relationship between business
requirements and software systems and therefore support
adaptability to business change.

This paper proposes a model-based approach to architec-
ture restructuring. The approach is aimed to support reengi-
neers in the planning phase of a restructuring project. It

Wilhelm Hasselbring
University of Kiel
Software Engineering Group
Olshausenstr. 40, 24098 Kiel, Germany
wha@informatik @uni-kiel.de

supports the decision of how the existing implementation
can be transfered to a new architecture without changing the
functionality of the code or the execution environment. The
approach focuses on realising a target architecture instead
of on understanding the existing architecture. It is assumed
that the target architecture is built in regard to current and
future business requirements. The goal is to find depen-
dencies in the current implementation that do not conform
to the target architecture. These dependencies have to be
removed during the actual restructuring of the implemen-
tation, e.g. using refactoring, in order to apply the target
architecture. Therefore understanding the existing architec-
ture and its dependencies in every detail is not required in
our approach.

The contribution of this paper is an approach that pro-
vides automatised support for architecture restructuring of
existing software systems. The approach is based on the
combination of forward and reverse engineering to connect
reengineering tasks to business requirements. The automi-
sation is implemented by graph clustering using weighted
dependencies in existing systems as core artefacts.

The paper is structured as follows. Section 2 describes
our approach to support architecture restructuring. Sec-
tion 3 describes how the approach can be used to improve
the maintainability of existing systems while Section 4 in-
troduces further application scenarios. Section 5 sketches
the planned evaluation of the approach. Section 6 lists re-
lated work before Section 7 concludes the paper.

2. Model-Based Architecture Restructuring

This section describes our model-based approach to ar-
chitecture restructuring. It is supposed to support reengi-
neers in assigning elements of the implemented architec-
ture (called source elements in our approach) to compo-
nents of the target architecture (target components). Fig-
ure 1 shows an overview of the approach. We assume that
a model of the existing system can be created using reverse
engineering methods. Another assumption is that there is

a target architecture model, which is typically created by a
software architect based on business requirements. The for-
ward engineering process that leads to the target architec-
ture can comprise more steps than the simplifying depiction
in Figure 1. A description of the mentioned models and the
requirements we have identified regarding their content is
given in Section 2.1.

Existing Code Requirements

Engineering

Reverse Forward

Engineering
— Initial (p‘[\b

Mapping

%\"
X

~d

Model of the
Existing System

Target Architecture

Analysis Model

Graph Clustering

Adjustment

Proposed Assignment

Figure 1. Overview of the proposed approach

The first step of the approach itself is an initial mapping
between elements of the target architecture and the model
of the existing system made by a reengineer. The map-
ping is detailed in Section 2.2. Together with the model of
the existing system the initial mapping is taken as input for
the creation of our analysis model. The analysis model is a
graph containing source elements as nodes and dependen-
cies between them as edges. A description and an example
are given in Section 2.3.

The analysis model is used as input for a graph clus-
tering algorithm that assigns all source elements to target
components. This proposed assignment is the output for the
reengineer. A simple algorithm that incorporates the initial

mapping and dependency weights is given in Section 2.4.
The reengineer is supposed to check the assignment incor-
porating quality metrics and knowledge about the system. If
the result is not satisfying, adjustments can be made directly
to the assignment or to the analysis input, which makes the
analysis an iterative process that can be influenced by the
reengineer. More details about possible adjustments are de-
scribed in Section 2.5. The adjusted proposed assignment
can then be taken as a basis for the restructuring of the ac-
tual implementation. It shows which source elements be-
long to which target components and indicates the depen-
dencies that do not conform to the target architecture.

2.1 Forward and Reverse Engineering

The basis of the proposed approach is the combination
of forward and reverse engineering in order to restructure
an existing system. In a forward engineering process the
target architecture of the future system is defined by a soft-
ware architect according to the business requirements. In
our approach we only focus on the structural architecture
of the system. Behavioural and deployment aspects are not
considered. We assume that the architecture describes the
components of the future system and its interfaces includ-
ing operations. We also assume that the information objects
that are managed by the components are part of the mod-
elled architecture.

The model of the existing system is created from the
source code using reverse engineering. The model has to
provide information about all source elements and their de-
pendencies. Source elements are e.g. classes, interfaces
and methods in object-oriented systems. The consideration
of higher-order elements like packages is only reasonable
in scenarios where implemented architecture and target ar-
chitecture are very similar. In other cases these should be
ignored. The dependencies between source elements have
to be described with their types. The following types of de-
pendencies are currently considered for systems written in
Java:

e Method Calls

e Inheritance

e Classes as types of return parameters of methods
e (lasses as types of method parameters

e (lasses as types of constructor parameters

e Classes as types of variables

e (Castings to a class

These dependencies are weighted according to the indi-
cation they give about the cohesion of two source elements

regarding the semantics of these elements in the business
domain. E.g. we assume that inheritance and the type of
a return parameter indicate a higher cohesion than method
calls. These weights are used by the graph clustering al-
gorithm to compute the assignment of source elements to
target components.

2.2 Initial Mapping

The initial mapping has to be done by reengineers in or-
der to get a first relation between the target architecture and
the existing system. The initial mapping serves as a starting
point for the clustering algorithm described in Section 2.4.
The goal is to keep the initial mapping as small as possible
to minimise the effort of the reengineers in the restructuring
process. In order to be able to apply the following analysis,
the initial mapping has to map at least one source element
to each target component. Opposed to a complete manual
mapping of source elements to target components we try to
define the minimal initial mapping that results in a proposed
assignment (cf. Figure 1) of high quality. The quality of the
proposed assignment can be measured by metrics defined
on the architecure model or judged by a reengineer based
on his knowledge about the business domain and technical
details of the system.

The initial mapping consists of two kinds of mappings:
the mapping of interfaces and operations in the target archi-
tecture to source elements and the mapping of information
objects in the target architecture to source elements. For
object-oriented systems, interfaces of the target architecture
are mapped to interfaces in the model of the existing sys-
tem or the operations of the target architecture interfaces
are mapped to methods in the model of the existing system.
Information objects can be mapped to classes in the model
of the existing system.

Figure 2 shows a simplified example taken from a first
case study using the JPetStore reference implementation’.
The upper half depicts parts of the target architecture. The
component OrderHandling provides an interface OrderSer-
vice to retrieve and insert order objects. The component also
manages Order information objects. The lower half shows
the model of the existing system with an interface Order-
Dao and its methods which uses an Order. As a simple
example of an initial mapping the Order in the target archi-
tecture can be mapped to Order in the existing system and
the operations of the interface OrderService can be mapped
to the methods of the interface OrderDao.

In practice mappings will be more complex than in the
given example. Naming and structure can be different in
the target architecture and the existing system and the im-
plementation of interfaces described in the target architec-

'http://ibatis.apache.org/javadownloads.html, last
visit: February 9, 2009

<<component>>

OrderHandling
OrderService
****** P +getOrder() - = —

Order +insertOrder() I
|
I |
I I
|MapsTo MapsTo |
Target Architecture | |
Model of the Existing | |
System | |
\2 OrderDao |

Ordi
o < _S<use>> _ |+getOrder() : Order < 4

+insertOrder(order : Order)

Figure 2. Simple example of an initial map-
ping

ture may be distributed over different interfaces and classes
in the existing system. We assume that the initial mapping
is done manually by a reengineer. Related work on the au-
tomisation of such mappings exists (e.g. [15]), but automi-
sation of the initial mapping is not in the scope of our work,
because we assume the initial mapping to be realisable with
acceptable effort. We also assume the manual mapping to
be more reliable than current automatised approaches.

2.3 Analysis Model

The analysis model is a graph model which is structured
as follows: the nodes of the graph represent source ele-
ments while directed edges represent dependencies between
source elements. The nodes are typed according to the type
of the source elements. The edges are typed according to
the types of dependencies described in Section 2.1. The de-
pendency types are weighted in order to gain architectural
reasonable assignments of source elements to target com-
ponents in the analysis. The implementation of this graph-
based analysis is described in 2.4. The initial mapping is
taken as a pre-assignment of source elements to target com-
ponents with which the nodes are annotated.

Figure 3 shows an example of dependencies between
interfaces and classes using the elements from the model
of the existing system from figure 2 and the class Order-
SqlMapDao. As can be seen in figure 3, OrderDao defines
two methods that have Order as the type of an input and a
return parameter. These dependencies are also depicted in
figure 3. Since OrderSqlMapDao implements OrderDao —
which is another dependency- it also inherits the dependen-
cies to Order. In the implementation of these methods two
more dependencies occur since Order is used as the type of
a variable and the type of a cast.

Figure 4 depicts the example in a graph representation
with typed nodes and edges. For reasons of clearness, we
only show the dependencies on the level of classes and inter-

ReturnType

OrderDac ()~ — — — — — — — — I
? ~ 7 7 ParameterType | |
v\
| - ReturnType | Order

b e = = — — >
| | : ParameterType A
P I
; L MethodVariableType | |

OrderSglIMapDao0 | — — — — — — —
|
© CastType

Figure 3. Example of dependencies between
classes

faces, in the example. The lowest structural level we con-
sider in the approach are methods, which covers the case
that classes are split up or combined during the restructur-
ing. The structure of methods, e.g. loops and branches, and
hence the split-up of methods during restructuring are not
considered.

<<interface>>
OrderDao

<<class>>
Order

<<class>> o
OrderSqlMapDao | &

Figure 4. Graph representation of the exam-
ple

2.4 Graph Clustering Analysis

To assign all source elements to target architectures we
use graph clustering methods. We will describe a simple
hierarchical clustering algorithm that makes use of the in-
formation given in the initial mapping and the dependency

weights in the following. The pre-assignments to target
components are used to define initial clusters of source ele-
ments — whereby one cluster corresponds to one target com-
ponent. To be able to define one initial cluster for each
target component at least one source element has to be as-
signed to each target component in the initial mapping. An
initial cluster comprises all source elements that are mapped
to the interfaces or information objects of its corresponding
target component. In the example in Figure 2 and Figure 3
OrderDao and Order would be assigned to an initial cluster
that represents the target component OrderHandling while
OrderSqlMapDao would not be assigned to an initial clus-
ter.

The following enumeration sketches the hierarchical
clustering algorithm. It works like a typical hierarchical
clustering algorithm as e.g. described in [12] with the ex-
ception that it will not combine two initial clusters. Thus
the algorithm will not execute until only one cluster is left,
but will stop when all source elements are assigned to one of
the initial clusters. The cohesion between clusters is defined
using the dependency weights. To compute the cohesion the
weights of all dependencies between the source elements in
both clusters are added. A high sum of dependency weights
indicates a high cohesion between the clusters.

1. Create one cluster for each source
element

2. Define initial clusters

3. Search for the two clusters with the
highest cohesion that are not both
initial clusters

4. Combine the two clusters with the
highest cohesion to a new cluster

5. If one of the two clusters is marked
initial, also mark the new cluster

6. Goto 3 as long as there are clusters
that are not initial clusters

Figure 5 shows an example of the clustering algorithm.
The clusters for each source element are depicted at the bot-
tom. Cluster 2 and 3 and 6 to 8 are combined to initial clus-
ters (IC1 and IC2) due to their pre-assignment to target com-
ponents. Shaded clusters are marked as initial cluster which
means that they are not allowed to be combined. Above the
second dotted line the iterative hierarchical clustering pro-
cess is shown. Unmarked clusters can be combined with
unmarked or marked cluster until only marked clusters are
left. Relating to the example used before, 2 and 3 could
e.g. be substituted with Order and OrderDao and 1 with
OrderSqlMapDao.

Figure 5. Simple clustering example

1 The sketched algorithm is only a first implementation
of a clustering algorithm that considers the initial mapping
and dependency weights. Further work on the algorithm
will follow, including the evaluation of other published al-
gorithms towards their adaptation to our requirements. An-
other open question is whether the algorithm should provide
a total clustering as shown here or just a partial clustering
that leaves relevant clustering decisions for the reengineer.
Besides the assignment to one target component, these de-
cisions could e.g. also include to redundantly add a source
element to two target components, if this is reasonable in
the domain or simplifies the further reengineering process.

2.5 Adjustments

There are two kinds of adjustments a reengineer may per-
form after the analysis. One is to adjust the assignments
manually in order to apply minor changes, if the analysis
provides an adequate result. The second adjustment is to
change the initial mapping in order to gain better analy-
sis results. The examination of the relationship between
changes in the initial mapping and the proposed adjustments
is part of our future work.

The main reason for proposing this iterative process is
the reduction of the effort for the reengineer. It makes it
possible to start a first analysis with a small initial map-
ping, e.g. only of information objects. In many cases these
will imply many other assignments like persistence or com-
putation on the information objects. If the results turn out
to be inadequate, the mapping can be refined and the algo-
rithm can be run again until a satisfying result is reached.
Inadequacy of results refers to assignments that are not rea-
sonable from the viewpoint of the business domain or that

lead to many dependencies between target components that
do not conform to the architecture. The latter corresponds
to high coupling and results in high refactoring effort to dis-
solve the dependencies in order to implement the target ar-
chitecture.

3. Maintainability Improvement

Lack of maintainability is a frequent problem in the de-
velopment of enterprise information systems. Especially
systems that have been developed for years suffer from ar-
chitecture erosion and inadequate documentation. Often the
knowledge about details of the system is only existing in the
heads of a few developers. New developers will then have
problems to acquaint themselves with the system. Also ar-
chitecture erosion leads to unexpected behaviour of the sys-
tem when changes are made, because not all dependencies
in the system are known or documented.

We assume that a system that conforms to a target ar-
chitecture will exhibit a better maintainability. To enable
this the target architecture should have a clear structure that
complies to the business needs and the implemented system
should not have dependencies that do not conform to this
architecture. It will also allow a better task sharing between
developers and a better separation of concerns regarding the
functional aspects of the system. Furthermore, an such a tar-
get architecture can serve as a documentation for the system
as long as it is maintained together with it.

It is assumed that the advantages of our approach for
maintainability improvement will show best, when the im-
plemented architecture and the target architecture have a
certain descrepancy. That descrepancy may be due to ar-
chitecture erosion or a planned restructuring of the system
according to the adjustments to business requirements. The
approach can tap its full potential when the effort of man-
ual assignment of source elements to target components is
infeasible due to the complexity of the system or unknown
dependencies. In practice this will appear e.g when pack-
ages can not be mapped to a target component as a whole,
but will have to be split up.

4. Other Application Scenarios

The proposed approach is applicable in several scenar-
ios. Besides the improvement of maintainability in a reengi-
neering project other scenarios are the extraction of services
for a service-oriented architecture, the smooth migration or
the extension of a product to a product line.

4.1 Extraction of Services

The extraction of services from monolithic applications
is a possible task during the introduction of a service-

oriented architecture. This task is needed to offer parts of
the functionality of a complex system as an independent ser-
vice in several areas of an application landscape. Another
reason is simply to reduce the dependencies, which may be
an even more important reason that the reusability of a ser-
vice. Work in the area of the migration to service-oriented
architectures can be found in [16, 17].

The target architecture in this scenario has to include at
least two components. One modelling the service that shall
be extracted and one modelling the system it shall be ex-
tracted from. It also has to model the complete interface of
the service and all required interfaces it will still use from
the existing system. The provided interfaces together with
the information objects it manages will define which source
elements belong to the service implementation while the re-
quired interfaces define the borders of service implemen-
tation. Using this input information the analysis algorithm
will assign source elements to the service component and
dependencies that do not correspond to the target architec-
ture can be recognised.

4.2 Smooth Migration

Smooth migration describes a stepwise migration of an
existing system from a source environment to a target envi-
ronment [7]. An example is the migration from COBOL to
Java. In these cases the functionality of the existing system
remains the same in the new system and new requirements
are only implemented in the target environment. Systems
that are candidates for a smooth migration are often grown
over years and suffer from architecture erosion. To migrate
these systems stepwise it is necessary to first restructure
them in order to be able to clearly define the source elements
that are migrated in one migration step. The application of
graph clustering to identify the migration steps in a smooth
migration scenario is described in [13].

If the proposed approach is applied to this scenario, the
target architecture will in most cases be very similar to
the architecture of the current implementation. The reason
therefor is to keep the refactoring effort in the source envi-
ronment as small as possible. Further improvements of the
architecture may then be made in the target environment.
Thus the main task of the analysis algorithm is to find de-
pendencies that do not conform to the target architecture.
In this case it may be useful to incorporate packages in the
initial mapping to be able to map groups of source elements
that shall not be changed in the target architecture directly
to one target component.

4.3 Product Extension

Individual software products are sometimes extended to
software product lines. Reasons for this are the improve-

ment of the adaptability for different customers or the con-
solidation of existing products. To accomplish the exten-
sion the components of the individual system have to be un-
coupled in order to enable configuration for different cus-
tomers. Therefore the dependencies between components
have to be reduced and need to conform to the target prod-
uct line architecture.

Relating to the proposed approach the target architecture
will be build according to similar business requirements as
the existing system. The main difference will be the fa-
cilitation to configure a product according to varying cus-
tomer needs. Thus the architecture of the implemented sys-
tem and the architecture of the target system can in some
cases also be very similar, especially in relatively new sys-
tems. Nonetheless it is a goal in such projects to reduce the
intended dependencies between components, which legiti-
mates the refactoring effort.

5. Evaluation Aspects

An evaluation of the approach is planned to answer the
following research questions:

e How can the quality of the restructuring solution be
improved?

e How does the analysis algorithm react to changing in-
put parameters?

e How does the approach behave compared to alternative
approaches?

The evaluation is based on an GQM plan as described in [1].
The goals in the plan correspond to the afore mentioned re-
search questions. Some of the question and metrics of the
GQM plan are exemplified in the following. The metrics
include metrics for the internal and external evaluation ac-
cording to [9]. Both kinds of metrics are needed our context
since internal metrics help to ensure the software engineer-
ing quality while external metrics ensure domain and busi-
ness orientation.

An important question regarding the quality improve-
ment of the restructuring solution is the consideration of the
quality of the analysis results. To evaluate the quality sev-
eral metrics are defined in our GQM plan. A simple metric
is to count the source elements per target component. For a
high quality usually a uniform allocation is assumed, but de-
pending on the difference between implemented and target
architecture the results may vary. More significant results
can be expected from the consideration of coupling and co-
hesion metrics. We will consider coupling and cohesion
metrics as e.g. proposed by [8] and [4] for object-oriented
systems.

Other metrics that influence the quality of the proposed
assignment are metrics regarding the dependencies that do

not conform to the target architecture. Relevant metrics are
the number and the weight of these dependencies. Both in-
fluence the refactoring effort since they have to be dissolved
in the architecture restructuring project. It is assumed that a
small number of these dependencies and low weights indi-
cate a high quality. To improve the quality also the weights
themselves have to be in the scope of the evaluation.

To improve the usability of the approach the reaction of
the graph clustering algorithm to changing input parameters
will be evaluated. The relevant input parameters are the ini-
tial mapping and the dependency weights. For both it has
to be examined how the proposed assignment changes for
typical changes of the input parameters. Typical changes
for the initial mapping are e.g. the addition of the mapping
of an information object or the operation of an interface.

First results in a small evaluation scenario showed that
the proposed assignment does not change continually for
changing dependency weights, but exhibits bigger changes
at certain values. It has to be examined how these values are
formalised in order to predict this behaviour.

Since most related approaches are aimed at the imple-
mented architecture as a starting point for program under-
standing or architecture refactoring (cf. 6), the comparison
with these approaches will only be possible for architecture
restructurings where the target architecture is similar to the
implemented architecture. For these cases the assignments
of source elements to target components can be compared.
Metrics are the number of identically assigned source ele-
ments or the number and weight of dependencies between
components that do not conform to the target architecture.
Other metrics are the rating of the assignments by experts
regarding the reengineering effort and the domain-specific
belonging of source elements to target components.

A first case study with a small web application showed
that the approach was applicable in that case. It also
indicated that clustering algorithms utilising dependency
weights and an initial mapping can produce better re-
sults than simple hierarchical clustering algorithms without
weighted dependencies and initial clusters. It also turned
out that the algorithm described in Section 2.4 leads to
groups of source elements that are clustered differently for
varying dependency weights. It indicated that there are cer-
tain thresholds for dependency weights at which the clus-
tering result changes. This will have to be examined more
deeply in further case studies with larger systems.

6. Related Work

The combination of forward and reverse engineering
which is the basis of the proposed approach also plays a
major role in the integration of software systems. [6] de-
scribes an approach that combines domain models with con-
crete models of existing systems for data integration in e-

commerce. It also describes the influence of models on each
other in an iterative approach. This can be assigned to our
approach by changing the target architecture according to
the knowledge gained from the analysis of the existing sys-
tem.

The combination of forward and reverse engineering for
the integration of software systems is also described in [14],
which describes a model-driven integration process. It pro-
poses a linking on the platform-independent model level as
defined in [11] that corresponds to the initial mapping de-
scribed in Section 2.2.

[5] describes how the reflexion method for program un-
derstanding [10] can be extended by automatic clustering.
Clustering methods are used to automatise the manual as-
signment of source elements to a hypothesised architecture.
The main difference to our approach is that the hypothe-
sised architecture shall approximate the implemented archi-
tecture as good as possible. So the focus of the approach
lies in finding unknown dependencies that do not conform
to the hypothesised architecture. By contrast, our approach
is supposed to create an assignment of source elements to
a newly designed architecture motivated by new business
requirements.

Further approaches that are aimed at the understanding
of the existing architecture and changing it according to new
business requirements are described in [2, 3]. These differ
from our approach since they restructure the architecture in-
crementally based on knowledge about the existing system.
Our approach on the other hand takes an architecture as a
starting point that is independent of the existing system and
aims at reducing the knowledge needed about the existing
system during the reengineering process.

7. Conclusions and Future Work

In this paper we presented an approach to support the ar-
chitecture restructuring. The approach is based on models
of an existing system and a target architecture. From these
an graph-based analysis model is created from which as-
signments of source elements to target components can be
computed via graph clustering. We introduced possible ap-
plication scenarios and sketched an GQM plan for the eval-
uation of the approach. The approach can enable the recov-
ery of the maintainability of existing systems by supporting
architecture restructuring.

Our future work will focus on the evaluation of the
proposed approach according to the evaluation aspects de-
scribed in Section 5. The evaluation will take place in a
case study with an industrial partner. We will further im-
prove the clustering algorithm and examine the possibility
to insert other published algorithms. We will also improve
the tooling for the creation of the analysis model and the
initial mapping.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

[11]
[12]

[13]

[14]

V. R. Basili, G. Caldiera, and H. D. Rombach. The Goal
Question Metric Approach. In Encyclopedia of Software En-
gineering, pages 528-532. Wiley, 1994.

M. Bauer and M. Trifu. Architecture-Aware Adaptive Clus-
tering of OO Systems. In 8th European Conference on Soft-
ware Maintenance and Reengineering (CSMR 2004), pages
3-14, 2004.

W. R. Bischofberger, J. Kiihl, and S. Loffler. Sotograph - A
Pragmatic Approach to Source Code Architecture Confor-
mance Checking. In EWSA, volume 3047 of Lecture Notes
in Computer Science, pages 1-9. Springer, 2004.

S. Chidamber and C. Kemerer. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineer-
ing, 20(6):476-493, 1994.

A. Christl, R. Koschke, and M.-A. Storey. Equipping the Re-
flexion Method with Automated Clustering. In Proc. of 12th
Working Conference on Reverse Engineering, pages 89-98,
Pittsburgh, PA, USA, November 2005. IEEE Computer So-
ciety.

W. Hasselbring. Web Data Integration for E-Commerce Ap-
plications. IEEE Multimedia, 9(1):16-25, March 2002.

W. Hasselbring, R. Reussner, H. Jaekel, J. Schlegelmilch,
T. Teschke, and S. Krieghoff. The Dublo Architecture Pat-
tern for Smooth Migration of Business Information Systems:
An Experience Report. In Proceedings of the 26th Interna-
tional Conference on Software Engeneering (ICSE 2004),
pages 117-126. IEEE Computer Society Press, May 2004.
M. Hitz and B. Montazeri. Measuring Coupling and Cohe-
sion In Object-Oriented Systems. In Proceedings of the 3rd
International Symposium on Applied Corporate Computing
(ISACC1995), Oct. 1995.

O. Magbool and H. A. Babri. Hierarchical Clustering for
Software Architecture Recovery. [EEE Transactions on
Software Engineering, 33(11):759-780, 2007.

G. C. Murphy, D. Notkin, and K. J. Sullivan. Software
Reflexion Models: Bridging the Gap between Source and
High-Level Models. In Proceedings of the Third ACM SIG-
SOFT Symposium on the Foundations of Software Engineer-
ing, pages 18-28. ACM Press, 1995.

Object Management Group (OMG). MDA Guide Version
1.0.1, June 2003.

S. E. Schaeffer. Graph Clustering. Computer Science Re-
view, 1(1):27-64, 2007.

N. Streekmann and W. Hasselbring. Towards Identification
of Migration Increments to Enable Smooth Migration. In
R. Kutsche and N. Milanovic, editors, First International
Workshop on Model-Based Software and Data Integration -
MBSDI 2008, number 8 in Communications in Computer
and Information Science, pages 79-90. Springer Verlag,
April 2008.

W.-J. van den Heuvel. Matching and Adaptation: Core Tech-
niques for MDA-(ADM)-driven Integration of new Busi-
ness Applications with Wrapped Legacy Systems. In Pro-
ceedings of MELS Workshop (EDOC). IEEE Press, October
2004.

[15]

(16]

(7]

W.-J. van den Heuvel. Aligning Modern Business Processes
and Legacy Systems - A Component-Based Perspective. Co-
operative Information Systems. MIT Press, 2007.

A. Winter and J. Ziemann. Model-based Migration to
Service-oriented Architectures - A Project Outline. In
H. Sneed, editor, CSMR 2007, 11th European Conference
on Software Maintenance and Reengineering, Workshops,
pages 107-110. Vrije Universiteit Amsterdam, Mar. 2007.
J. Ziemann, K. Leyking, T. Kahl, and D. Werth. Enter-
prise Model driven Migration from Legacy to SOA. In
R. Gimnich and A. Winter, editors, Workshop Software-
Reengineering und Services, Fachberichte Informatik, pages
18-27, Koblenz, Germany, 2006. University of Koblenz-
Landau.

