
Extending ANSI/IEEE Standard 1471 for
Representing Architectural Rationale

Simon Giesecke and Jasminka Matevska and Wilhelm Hasselbring

Carl von Ossietzky University of Oldenburg, Software Engineering Group,
26111 Oldenburg (Oldb.), Germany,

{giesecke,matevska,hasselbring} @informatik.uni-oldenburg.de

Abstract. Both software engineering research community and stan-
dardisation organisations recognized a need for a general standard as a
guideline for modelling software architectures. Even though the ANSI/-
IEEE Standard 1471 provides a widely applicable reference model for
that purpose, it merely identifies a need of a rationale for the architec-
tural concepts selected, but does not include any further principles. We
present one possible extension of the standard which integrates the con-
cepts of architectural style, and identifies rationale on the model, view
and viewpoint levels.

1 Introduction and Motivation

The motivation for the work can be found in the context of style-based modelling
of software architectures. Many definitions of architectural styles and patterns
exist, as well as definitions of similar concepts that play a role in the description of
software architecture. Most of these definitions are vague and even conflicting [1].
Therefore, we see the need to relate these concepts to an established reference
model for architectural descriptions. The ANSI/IEEE Standard 1471 provides
the most elaborate, widely applicable reference model for our purpose. We extend
the work described in [1] by relating the identified concepts to the elements
already existing in the standard.

Furthermore, there is a possibility of mapping specific the UML onto the ref-
erence model. For example, a viewpoint may prescribe the use of certain UML
diagram types. UML 2.0 introduces collaborations as a notation part of Com-
posite Structure Diagrams. These may be used to model particular viewpoints
and even describing architectural patterns.

2 Foundations and State of the Art

ANSI/IEEE Standard 1471 The ANSI/IEEE Standard 1471 provides a well-
founded conceptual reference model for software architecture as well as a defini-
tion of software architecture. The UML class model shown in Figure 1 is directly
reproduced from the standard. However, the standard itself notes that this model
is not authoritative with respect to the relationships of the represented concepts,
but should merely serve as an illustration of the standard’s intentions.



Fig. 1. ANSI/IEEE 1471 Reference Model

Generic elements An exception to this general rule is the Library Viewpoint
concept, since it explicitly refers to entities that are not confined to a single
architectural description, but are reused across projects. This leads us to intro-
duce a deviation of the original reference model and categorise the class with
the generic stereotype. We will use this stereotype in our extension as well.

Description elements The standard does not explicitly make assumptions on
the form in which the architectural description is represented, other than that
the primary information is contained in the models (rather than the views, e.g.,
which are only conceptual entities that organise information contained in the
models). It remains unspecified which description elements other than the models
form part of an architectural description. In other words, it is unclear how to
map the parts of a concrete architectural description to the conceptual elements
provided by the reference model. While this is possible for the single architectural
models, it is impossible for description elements that are not constrained to a
single model: for example, the metainformation on which viewpoints have been
chosen or which models are present are not part of any model, but have to be
found elsewhere. It is not the intention of a standard to provide some logical or
physical structure for an architecture description, but it should still be possible
to use the vocabulary defined by the standard to refer to the elements of such
structures defined by third parties.



In the original standard, architectural rationale is defined to comprise “the
rationale for the architectural concepts selected” and “evidence of the consid-
eration of alternative architectural concepts and the rationale for the choices
made”.

Conclusion With these restrictions in mind, we still deem the standard’s refer-
ence model useful to provide a basis for presenting our extensions. It is important
to note that the purpose of the reference model is not to provide a meta-model
for instantiating architectural descriptions, neither manually nor tool-supported,
but to provide the vocabulary necessary for communicating about architectural
description concepts and for defining specific architectural description methods.

Related Work In [2], another extension of the IEEE Standard 1471 reference
model for representing architectural rationale is proposed. They introduce the
additional classes ArchitecturePrinciple, ArchitectureDecision, QoS-
Constraint, ArchitectureOption and Eval[uation]Criteria. Architec-
tureDecisions are linked to the views they influence, while Architecture-
Principles are derived from the Mission.

3 Proposed Standard Extension

In accordance with the rationale underlying the standard itself, we propose a
lightweight extension of the standard, which ought to be general enough to be
applicable to any architectural description practice that can be mapped onto the
original standard. We introduce rationale documentation for each of the central
concepts viewpoints, views and models. While that view is not explicitly held in
the standard, we assume these three concepts can be regarded as three layers of
architectural description in the stated order.

In an analogous hierarchy, architectural rationale can be structured along the
same layers:

Rationale for Viewpoint Selection As the standard already notes, part of the
architectural rationale is the documentation of the reasons for choosing the set
of viewpoints used.

The standard already introduces the notion of a library viewpoint, which
is a viewpoint that is typically used in documenting software architectures in
a particular application domain, for example. However, even more useful are
collections of viewpoints that often occur together and provide a meaningful
coverage of typically relevant architectural concerns. One example for such a set
of viewpoints are those defined in the Reference Model for Open Distributed
Processing (RM-ODP) (ISO/IEC Standard 10746-1).

Rationale for View Principles Next, on the level of views, the principles for or-
ganizing the contents of the view must be determined. Important means, espe-
cially for structurally oriented views, are architectural styles. Analogously to the



distinction of Architecture and ArchitecturalDescription made by the
standard, we distinguish a Style (as a conceptual entity) from a StyleDescrip-
tion (a representation of the former conceptual entity). The question whether
multiple styles can be combined or if they may overlap within a model remains
unresolved [3], so we do not explicitly introduce a restriction in this direction
into our model. When applying the reference model, it must be decided if such
a restriction should be made or not.

Styles may be taken from a library associated with the viewpoint, i.e. a
viewpoint proposes certain styles, and thus be intended to be reused across
different projects. Alternatively, it may be specifically modelled for the project
at hand.

A style establishes principles for modeling within the view, but does not yet
instantiate any concrete elements, e.g. the choice for a pipe-and-filter style does
not instantiate any concrete pipe or filter, which is a separate design activity.
This is different than for design patterns: E.g., when choosing the Singleton
pattern [4], the choice of the Singleton pattern and the identification of the
class which should be made a singleton cannot be separated but form a single
atomic design decision. However, for a style, patterns may be defined that can
be instantiated once the style has been selected.

The view principles rationale may also select a ReferenceArchitecture
which serves as the basis for this architectural view.

Rationale for Model Elements Concrete elements representing system entities are
represented in the models of an architectural description. The documentation
of reasons for choosing certain elements over others are thus documented on
this rationale level. This documentation cannot always be associated with single
elements of a model, sometimes multiple elements must be seen in context, for
example when instantiating patterns associated with a style [5].

Each of the architectural rationale parts is thought to be a description ele-
ment on its own. They thus accompany the primary description elements (the
models). We explicitly introduce the elements of the architectural rationale as
description elements that convey information on their own.

Justification It might seem natural to model ReferenceArchitecture as
a specialisation of architecture. However, we decided against this for two
reasons: First, specialisation relationships are not considered at all in the original
standard, and so the introduction for this class would impair the coherence of
the reference model. Second, an architecture is associated with a single system,
which is obviously not the case for a reference architecture, which make only
sense if it is applied to multiple systems. Adapting the standard to restrain from
this problem would require several further changes to the standard, which we
chose not to make.

As indicated above, we associate a StyleDescription with a View. This
is a deliberate design choice, and its alternatives were to associate a style with
either a Model or with the ArchitecturalDescription as a whole. We de-
cided not to associate a style with a model, because a style governs a decomposi-



Fig. 2. Extension of the Reference Model

tion of the system which may be referenced in multiple models. Furthermore, we
decided against associating a style with the architectural description as a whole,
since different decompositions of a system (e.g. its run-time decomposition into
process components vs. its design-time decomposition into module components)
may be governed by different styles with no immediate relationship.

References

1. Giesecke, S., Hasselbring, W., Riebisch, M.: Classifying architectural constraints as
a basis for software quality assessment. Advanced Engineering Informatics (2006)
Accepted for publication.

2. Sarkar, S., Thonse, S.: EAML – architecture modeling language for enterprise ap-
plications. In: CEC-EAST ’04: Proceedings of the E-Commerce Technology for Dy-
namic E-Business, IEEE International Conference on (CEC-East’04), Washington,
DC, USA, IEEE Computer Society (2004) 40–47

3. Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R.: Doc-
umenting Software Architectures: Views and Beyond. Pearson Education (2002)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley (1995)

5. Garlan, D.: What is style? In Garlan, D., ed.: Software architectures. Volume
106 of Dagstuhl-Seminar-Report., Saarbrücken, Germany (1995) Proceedings of the
Dagstuhl Workshop on Software Architecture.


	Extending ANSI/IEEE Standard 1471 for Representing Architectural Rationale
	Simon Giesecke, Jasminka Matevska, Wilhelm Hasselbring (Carl von Ossietzky University of Oldenburg)

